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Abstract. Wiener has shown that when the RSA protocol is used with
a decrypting exponent, d, which is less than N1/4 and an encrypting
exponent, e, approximately the same size as N , then d can usually be
found from the continued fraction approximation of e/N . We extend this
attack to the case when there are many ei for a given N , all with small di.
For the case of two such ei, the di can (heuristically) be as large as N5/14

and still be efficiently recovered. As the number of encrypting exponents
increases the bound on the di, which enables efficient recovery of the
di, increases (slowly) to N1−ε. However, the complexity of our method
is exponential in the number of exponents present, and therefore only
practical for a relatively small number of them.

1 Introduction

In the RSA protocol (see [RSA]), Alice publishes a public modulus N and an
encrypting exponent e. The modulus N should be the product of two large
distinct primes p and q which are kept secret. To make the factoring of N hard, p
and q are often chosen with about the same number of digits. With the knowledge
of p and q Alice can also calculate d such that ed = 1 mod λ(N) where λ(N) =
lcm(p−1, q −1). Anyone wishing to encrypt a message m for Alice then raises it
to the power e modulo N . This can then be decrypted (hopefully only by Alice)
by another exponentiation since (me)d = m (mod N). Clearly if one can factor
N then one can also decrypt any messages sent to Alice.

Despite twenty years of intensive research on the RSA cryptosystem no de-
vastating attacks on it have been discovered so far. However, under certain cir-
cumstances more efficient attacks rather than simply factoring the modulus N
are known (see Boneh [B] for a recent survey). One of those is the use of a
small private exponent d and another one is the use of a common modulus N
for several key pairs ei, di. Let us elaborate these attacks a little bit further.

For efficient RSA signature generation it may be tempting to use a small
private exponent d. Unfortunately, Wiener [W] has shown that when the RSA
protocol is used with a decrypting exponent, d, less than N1/4 and an encrypting

R. Baumgart (Ed.): CQRE’99, LNCS 1740, pp. 153–166, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



154 N. Howgrave-Graham and J.-P. Seifert

exponent, e, approximately the same size as N , then the RSA system can be
broken. Very recently Boneh and Durfee [BD] managed to improve Wiener’s
result by showing how to break the RSA system even when using decrypting
exponents of size less than N0.292. In order to simplify the RSA key management
one may be tempted to use a single modulus for several key pairs ei, di. However,
as pointed out by Simmons [Si], whenever a message m is sent to two participants
whose public exponents happen to be relatively prime, then the message m
can be easily recovered without breaking the system. DeLaurentis [D] described
two further attacks in which a participant can break such a common modulus
cryptosystem. Particularly, he showed that knowledge of one key pair ei, di gives
rise to an efficient probabilistic algorithm for factoring the modulus N . Moreover,
he also showed that knowledge of one key pair ei, di gives rise to an efficient
deterministic algorithm to generate other key pairs without determining λ(N).
For a thorough discussion of the common modulus situation when using RSA
we refer to Moore [M].

However, we stress that Simmons attack does not break the RSA system at
all and that the attack of DeLaurentis assumes that the attacker is also given
the secret exponent. Having said all this, it seems to be natural to study the
more realistic problem of what an opponent might do, given only several public
exponents for a given modulus and the knowledge of the corresponding private
exponents being quite small. This is the purpose of this paper. Although, as
explained before, this situation is not common in present-day RSA systems,
an analysis of this problem sheds some light on the gain of additional public
information in attacking RSA and on the security of re-using the modulus N .
Moreover, it seems a natural way to better understand and extend Wiener’s
original idea which might also be useful in other circumstances.

The question of how to combine several public exponents for a given modulus
in order to reduce the size constraint on the private exponents for their efficient
reconstruction was only very recently initiated by Guo [G]. Still based on the
continued fraction approach of Wiener, Guo showed how to break RSA given 3
public exponenents even when their corresponding decrypting exponents are of
size less than N1/3. Using instead a lattice basis reduction approach we conti-
nue this study here, generalising (and improving) the result up to an arbitrary
number of exponents. Particularly, we show that with n encrypting exponents
ei, our lattice basis approach allows for the di to be as large as Nαn where

αn =




(2n+1)2n−(2n+1) ( n
n/2)

(2n−2)2n+(4n+2) ( n
n/2)

if n is even,

(2n+1)2n−4n ( n−1
(n−1)/2)

(2n−2)2n+8n ( n−1
(n−1)/2)

if n is odd.

It is interesting to note that our method already allows for 2 encrypting ex-
ponents a decrypting exponent bound of N5/14, which is superior to the N1/3

bound of Guo for 3 encrypting exponents.
As our approach combines ideas from both Wiener and Guo into a single

lattice the next section reviews the approaches of Wiener and Guo and gives
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an overview of our extension approach. Our solution to the general problem of
n encrypting exponents is given in section 3 starting with some preliminaries
and examining first the cases of 2, 3 and 4 exponents before generalising the
approach to n exponents. Section 4 then describes experimental results for our
lattice basis.

2 Low Private Exponent Attacks on RSA

2.1 Wiener’s Approach

It was shown in Wiener [W] that, if one assumes λ(N) and e are both approxi-
mately as large as N , and if the decrypting exponent d is less than N1/4 then the
modulus N can be factored by examining the continued fraction approximation
of e/N . This follows because e and d satisfy the relationship ed−kλ(N) = 1. So
letting λ(N) = (p − 1)(q − 1)/g, and s = 1 − p − q we have that

edg − kN = g + ks. (1)

Dividing both sides by dgN gives

e

N
− k

dg
=

g + ks

dgN
=

(
k

dg

) ( s

N

)
+

1
dN

.

Now using the assumption that e ' N , and that s ' N1/2 means (from ex-
amining equation 1) that k/(dg) ' 1 so that the right-hand side of the above
equation is approximately N−1/2. It is well known (see for instance [HW]) that
if

|x − a/b| < 1/(2b2)

then a/b is a continued fraction approximant of x. Thus if N−1/2 < 1/(2(dg)2)
then k/(dg) will be a continued fraction approximant of e/N . This is true whe-
never

d < 2−1/2(1/g)N1/4, (2)

and g will be small under the assumption that λ(N) ' N (though clearly g ≥ 2
since both p and q are odd). Given dg one may calculate

r = (p − 1)(q − 1) =
edg

k
− g

k
= bedg/ke (since g is small),

and then we can factor N since the factors p and q satisfy the quadratic relati-
onship x2 − (N + 1 − r)x + N = 0.
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2.2 Guo’s Approach

The approach taken in Guo [G] assumes that one has more than one ei for a
given N , and that each of these ei has a relatively small di. Guo only considers
the problem for 2 and 3 encryption exponents. For 2 exponents we have the
following relations:

e1d1g − k1(p − 1)(q − 1) = g

e2d2g − k2(p − 1)(q − 1) = g,

so multiplying the first by k2, the second by k1, and subtracting gives

k2d1e1 − k1d2e2 = k2 − k1. (3)

Dividing now both sides of equation 3 by k2d1e2 implies the following

e1

e2
− k1d2

k2d1
=

k2 − k1

k2d1e2
,

and assuming that the di (and hence ki if the ei are large) are at most Nα means
that the right-hand side is about N−(1+α).

For the fraction k1d2/(k2d1) to be a continued fraction approximant of e1/e2,
we must therefore have that

2(k2d1)2 < N1+α,

and with the assumptions that k2 and d1 are at most Nα and that g is small
this condition will be true whenever α = 1/3 − ε for some ε > 0.

However, unlike the situation with Wiener’s attack, the fraction k1d2/(k2d1)
does not break the RSA cryptosystem for two reasons:

– Firstly knowing, say, the numerator k1d2, does not allow us to find d2 or k1
without factoring this number.

– Secondly there may be a factor in common between d1k2 and d2k1 in which
case the continued fraction method would not give a fraction with numerator
k1d2 and denominator k2d1, but rather the fraction with the common factor
removed.

Guo assumes that the second problem does not exist, i.e. that we have
gcd(k1d2, k2d1) = 1, and it is estimated that this happens with probability
6/π2 ' 0.61.

To get around the first problem, Guo suggests that one could either try to
factor k1d2 (a number of size about N2/3 and not typically of a hard factorisation
shape), or alternatively assume that one has another encrypting exponent e3 with
d3 < N1/3. Then (repeating the above procedure with e3 and e2) one can also
find k3d2, and calculating gcd(k1d2, k3d2) will hopefully (if gcd(k1, k3) = 1) give
d2 and thus allow the factoring of N . The probability of this attack working
under the given assumptions is (6/π2)3 ' 0.23.
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2.3 Overview of our Extension Approach

As already said in the introduction, our approach also assumes that we have
more than one ei for a given N , and that each of these ei has a relatively small
di.

In the remainder we will use, among others, ideas from both Wiener and Guo
to solve the general problem of breaking RSA in the presence of n encrypting ex-
ponents ei, all with relatively small di < Nαn , i = 1, . . . , n. The main technique
used in deriving these results is the creation and subsequent reduction of certain
lattices. The approach taken by us, however, can currently only be classed as a
heuristic method because, although the vectors we search for can be shown to
be relatively short, we cannot prove yet that they are indeed among the shortest
vectors (and hence bound to be found by lattice basis reduction algorithms). Ne-
vertheless, in section 4 it is shown that our approach performs well in practice,
and that the following theoretically derived bounds are frequently achieved. In
particular, in the presence of n encrypting exponents ei, our approach allows for
the di to be as large as Nαn where

αn =




(2n+1)2n−(2n+1) ( n
n/2)

(2n−2)2n+(4n+2) ( n
n/2)

if n is even,

(2n+1)2n−4n ( n−1
(n−1)/2)

(2n−2)2n+8n ( n−1
(n−1)/2)

if n is odd.

The first few (from n = 1) start 1/4, 5/14, 2/5, 15/34, 29/62. In section 3.5 it
is shown that αn → 1 as n → ∞.

If the LLL algorithm (see [LLL]) is used in order to reduce the lattices
underlying our approach, and the (pessimistic) estimate for its complexity of
O(m6 log3 B) is assumed (given a lattice of dimension m with largest norm B),
then the complexity of our method is O(26nn3 log3 N), and so clearly the attack
is only practical for small n.

3 An Extension in the Presence of Many Small
Decryption Exponents

3.1 Preliminaries

In extending the analysis to n encrypting exponents ei (with small decrypting
exponents di), we use both Wiener’s and Guo’s ideas. We shall refer to relations
of the form

digei − kiN = g + kis

as Wiener equations, and we shall denote them Wi (see equation 1 for an exam-
ple). Similarly we shall refer to relations of the form

kidjej − kjdiei = ki − kj
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as Guo equations, and shall denote them Gi,j (see equation 3 for an example).
We shall also assume, for a given n, that the di and ki are at most Nαn , that g
is small, and that s is around N1/2. Notice that the right-hand sides of Wi and
Gi,j are therefore quite small; in fact at most N (1/2)+αn , and Nαn respectively.
Finally we often refer to composite relations, e.g. WuGv,w, in which case we
mean the relation, whose left-hand (resp. right-hand) side is the product of the
left-hand (resp. right-hand) sides of Wu and Gv,w. For example, WuGv,w which
has a relatively small right-hand side, bounded in size by N (1/2)+2αn .

In the following analysis we examine the cases of 2, 3 and 4 exponents before
generalising the approach to n exponents. This is done both to give explicit
examples of the approach when in the presence of a small number of exponents,
and also because it is not until the presence of 4 exponents that the general
phenomenon becomes clear. The relations that we choose for the cases of 2, 3
and 4 exponents may seem “plucked from the air”, but the pattern is made clear
in section 3.5.

3.2 RSA in the Presence of 2 Small Decryption Exponents

Assuming that we have two small decryption exponents, then the following re-
lations hold: W1, G1,2, W1W2; or more explicitly:

d1ge1 − k1N = g + k1s,

k1d2e2 − k2d1e1 = k1 − k2,

d1d2g
2e1e2 − d1gk2e1N − d2gk1e2N + k1k2N

2 = (g + k1s)(g + k2s).

Multiplying the first of these by k2 means that the left-hand sides are all in terms
of d1d2g

2, d1gk2, d2gk1, and k1k2, and hence we may write these equations in
the matrix form below.

(k1k2, d1gk2, d2gk1, d1d2g
2)




1 −N 0 N2

e1 −e1 −e1N
e2 −e2N

e1e2


 =

(k1k2, k2(g + k1s), g(k1 − k2), (g + k1s)(g + k2s).

The size of the entries of the vector on the right-hand side are at most N2α2 ,
N (1/2)+2α2 , Nα2 , and N1+2α2 respectively. These size estimates may be made
roughly equivalent by multiplying the first three columns of the matrix by N ,
M1 = N1/2, and M2 = N1+α2 respectively, which gives the following matrix:

L2 =




N −M1N 0 N2

M1e1 −M2e1 −e1N
M2e2 −e2N

e1e2




In this case the vector b = (k1k2, d1gk2, d2gk1, d1d2g
2) will be such that

‖bL2‖ < 2N1+2α2 .
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We must now make the assumption that, in the lattice generated by the rows
of L2, the shortest vector has length ∆1/4−ε, where ∆ := det(L2) ' N (13/2)+α2 ,
and moreover that the next shortest linearly independent vector has a signifi-
cantly larger norm than the shortest vector in L2. Indeed, if the lattice L2 is
pretty “random”, there are almost surely no lattice points of L2 significantly
shorter than the Minkowski bound 2∆1/4. Under these assumptions, then bL2 is
the shortest vector in the lattice if

N1+2α2 < (1/c2)
(
N (13/2)+α2

)1/4

for some small c2, which is true if

α2 < 5/14 − ε′.

This implies that the vector b = (b1, b2, b3, b4) can be found via lattice basis
reduction algorithms (e.g. LLL) if α2 < 5/14 − ε′, and then d1g/k1 = b2/b1 can
be calculated, which leads to the factoring of N as shown in section 2.1.

3.3 RSA in the Presence of 3 Small Decryption Exponents

This method extends easily to 3 encrypting exponents. We now have the quan-
tities 1, e1, e2, e1e2, e3, e1e3 and e1e2e3 from which to form linear relationships,
and we already have relationships concerning the first four of these from the 2
exponent case, namely 1, W1, G1,2 and W1W2. For the remaining relationships
we choose G1,3, W1G2,3, W2G1,3 and W1W2W3. These relations imply looking
for the vector

b = (k1k2k3, d1gk2k3, k1d2gk3, d1d2g
2k3,

k1k2d3g, k1d3g, k2d3g, d1d2d3g
3),

by reducing the rows of the following lattice:

L3 =




1 −N 0 N2 0 0 0 −N3

e1 −e1 −e1N −e1 0 e1N e1N
2

e2 −e2N 0 e2N 0 e2N
2

e1e2 0 −e1e2 −e1e2 −e1e2N
e3 −e3N −e3N e3N

2

e1e3 0 −e1e3N
e2e3 −e2e3N

e1e2e3




× D,

where D is the diagonal matrix

diag(N3/2, N, N (3/2)+α3 , N1/2, N (3/2)+α3 , N1+α3 , N1+α3 , 1)

used to maximise the determinant of L3 and still keep

‖bL3‖ <
√

8N (3/2)+3α3 .
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Again, using the assumptions that the shortest vector in the lattice generated
by the rows of L3 has length det(L3)(1/8)−ε, and is also significantly shorter than
the next shortest linearly independent vector in L3, means that bL3 will be the
shortest vector in the lattice L3 if

N (3/2)+3α3 < (1/c3)
(
N20+4α3

)1/8

for some small c3 which is true if

α3 < 2/5 − ε′.

By using again the first two components of b, as in the 2 exponent case, one may
now factor the modulus N as shown in section 2.1.

3.4 RSA in the Presence of 4 Small Decryption Exponents

In the presence of 4 exponents we can now use linear relationships among the
quantities 1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3, e4, e1e4, e2e4, e3e4, e1e2e4, e1e3e4,
e2e3e4 and e1e2e3e4. As before we already have linear relationships for the first
half of these quantities from the analysis in the presence of 3 equations. For
the remaining quantities we use the relations G1,4, W1G2,4, G1,2G3,4, G1,3G2,4,
W1W2G3,4, W1W3G2,4, W2W3G1,4 and W1W2W3W4. Putting these relations in
matrix form, and multiplying the columns by appropriate factors to make all
the relations of size at most N2+4α4 , results in a 16 × 16 matrix, L4, which has
determinant N (109/2)+13α4 . The vector b we are now looking for is

b = (k1k2k3k4, d1gk2k3k4, k1d2gk3k4, d1d2g
2k3k4,

k1k2d3gk4, d1k2d3g
2k4, k1d2d3g

2k4, d1d2d3g
3k4,

k1k2k3d4g, d1k2k3d4g
2, k1d2k3d4g

2, k1k2d3d4g
2,

d1d2k3d4g
3, d1k2d3d4g

3, k1d2d3d4g
3, d1d2d3d4g

4).

Therefore, again making the same assumptions as before, implies that the vector
bL4 is the shortest vector in the lattice generated by the rows of L4 if

N2+4α4 < (1/c4)
(
N (109/2)+13α4

)1/16

for some small c4, and this is true if

α4 < 15/34 − ε′.

Using again the first two components of b, as in the 2 and 3 exponent case, one
may again factor the modulus N as shown in section 2.1.
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3.5 The General Approach

Due to space limitations we defer the subtle computation of the general allowable
bound on the di when we have n encrypting exponents ei, i = 1, . . . , n, to the
appendix and show below simply the graph for

αn =




(2n+1)2n−(2n+1) ( n
n/2)

(2n−2)2n+(4n+2) ( n
n/2)

if n is even,

(2n+1)2n−4n ( n−1
(n−1)/2)

(2n−2)2n+8n ( n−1
(n−1)/2)

if n is odd.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

"bounds"

Fig. 1. Graph of bounds αn for n ≤ 100.

4 Practical Results

Although our method is at the current time only heuristic, it works well in
practice as can be seen from our experimental results below.

Our implementation uses the NTL library [Sh] of Victor Shoup. Timings are
given for a 300 MHz AMD K6 running under Linux.

RSA-500 with 2 public exponents
α2 bit length of di avg. time in secs. success rate

0.356 178 0.441 40%
0.354 177 0.421 100%
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Fig. 2. Average running time (in seconds) and success rate for 10 random expe-
riments as a function of α2.

RSA-700 with 2 public exponents
α2 bit length of di avg. time in secs. success rate

0.357143 250 1.075 0%
0.355714 249 1.117 70%
0.354286 248 0.93 80%
0.352857 247 1.33 100%

Fig. 3. Average running time (in seconds) and number of success rate for 10
random experiments as a function of α2.

RSA-500 with 3 public exponents
α3 bit length of di avg. time in secs. success rate
0.4 200 3.632 0%

0.398 199 3.567 40%
0.396 198 3.599 90%
0.394 197 3.726 90%
0.392 196 3.595 90%
0.39 195 3.529 100%

Fig. 4. Average running time (in seconds) and success rate for 10 random expe-
riments as a function of α3.

RSA-200 with 4 public exponents
α4 bit length of di avg. time in secs. success rate

0.44 88 14.538 0%
0.435 87 14.496 50%
0.43 86 14.328 80%
0.425 85 14.159 100%

Fig. 5. Average running time (in seconds) and success rate for 10 random expe-
riments as a function of α4.

RSA-200 with 5 public exponents
α5 bit length of di avg. time in secs. success rate

0.45 90 424.756 0%
0.445 89 427.275 60%
0.44 88 422.74 100%

Fig. 6. Average running time (in seconds) and success rate for 10 random expe-
riments as a function of α5.
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5 Open Problems

The major open problem raised by our work is the following. To work out the
manageable bound on αn for the secret exponents we had to make two heuristic
assumptions concerning “random” lattices. As the experimental results strongly
support the derived bounds it is natural to ask whether our attack can be turned
into a rigorous theorem?
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Appendix

We now work out the general bound on the di when we have n encrypting
exponents. The reader is encouraged to refer back to the previous sections (when
n = 2, 3 and 4) as examples.

Given that there are n exponents ei, then there are 2n different quantities, hj ,
involving the ei’s, and the product of all of these (assuming e ' N) is N (n2n−1).
This means that one considers a diagonal matrix, Ln, of dimension 2n, and
that the determinant of this matrix, before multiplying the rows to increase the
allowable bound, is N (n2n−1).
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The last relation W1W2 . . . Wn has a right-hand side of at most N (n/2)+nαn ,
and thus we increase the right-hand side of all the other relations up to this
bound, making the desired vector b such that ‖bLn‖∞ is (still) approximately
N (n/2)+nαn . The general form of the desired vector b is that its jth entry is the
product of n unknown quantitities ai for i = 1 . . . n, where ai is either dig or ki

depending on whether ei is present in the jth quantity hj or not.
We now consider the interesting problem of which relations to consider for n

equations. Observe that a general relation of the form

Ru,v = Wi1 . . . Wiu
Gj1,l1 . . . Gjv,lv ,

(where the i1, . . . , iu, j1, . . . , jv, l1, . . . , lv are unique), has a left-hand side com-
posed of products of (u + 2v) of the ei’s with coefficients that are products of
(u + v) of the unknown quantities ai (where ai is again either dig or ki). Also
notice that the right-hand side of Ru,v has size at most N (u/2)+(u+v)αn .

Our method requires all the coefficients to be roughly the same size (a product
of n of the quantities ai). This means that relations which have coefficients less
than this must be multiplied (on both sides) by some missing ki. For example,
in the the 2 exponent case we multiplied the first equation by k2 to make all the
coefficients of size N2α2 . This has the effect of increasing the right-hand side of
relation Ru,v to a size bounded by N (u/2)+(n−v)αn .

Given this new relation Ru,v we now need to make it’s right-hand side as large
as the right-hand side of W1W2 . . . Wn, which means multiplying (both sides)
by N (n−u)/2+vαn . For example, these multiplication factors are the (diagonal)
entries of the diagonal matrix D in the example when n = 3.

Say that the product of these multiplication factors (i.e. the determinant of
D in the n = 3 example) is Nβn , where βn = x + yαn, and let Ln denoted
the lattice of (modified) relations as before. This means that (under the usual
assumptions) the vector bLn is the shortest vector of the lattice if

Nn/2+nαn < (1/cn)
(
Nn2n−1+x+yαn

)1/2n

for some small cn, i.e. when

αn <
x

n2n − y
− ε′. (4)

In order to maximise αn we wish both x and y to be large. This means that
the relations should be chosen to maximise v (and minimise u). For instance
when n = 2 we choose the relations W1, G1,2 and W1W2 rather than W1, W2
and W1W2 because β2 = 2 in the latter case rather than 5/2+α2 in the former.

With this general principle in mind we still need to explain exactly which
relations we use. In order to mantain the triangularity of Ln we only consider
relations which introduce one new quantity hj . The choices for n ≤ 5 can be
seen in the below figure.
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size of size of size of contribution
hj relation coeffs hj rhs to βn

1 − 0 0 0 (n/2)
e1 W1 1 1 (1/2) + αn (n − 1)/2
e2 G1,2 2 1 αn (n/2) + αn

e1e2 W1W2 2 2 1 + 2αn (n − 2)/2
e3 G1,3 2 1 αn (n/2) + αn

e1e3 W1G2,3 3 2 (1/2) + 2αn (n − 1)/2 + αn

e2e3 W2G1,3 3 2 (1/2) + 2αn (n − 1)/2 + αn

e1e2e3 W1W2W3 3 3 (3/2) + 3αn (n − 3)/2
e4 G1,4 2 1 αn (n/2) + αn

e1e4 W1G2,4 3 2 (1/2) + 2αn (n − 1)/2 + αn

e2e4 G1,2G3,4 4 2 2αn (n/2) + 2αn

e3e4 G1,3G2,4 4 2 2αn (n/2) + 2αn

e1e2e4 W1W2G3,4 4 3 1 + 3αn (n − 2)/2 + αn

e1e3e4 W1W3G2,4 4 3 1 + 3αn (n − 2)/2 + αn

e2e3e4 W2W3G1,4 4 3 1 + 3αn (n − 2)/2 + αn

e1e2e3e4 W1W2W3W4 4 4 2 + 4αn (n − 4)/2
e5 G1,5 2 1 αn (n/2) + αn

e1e5 W1G2,5 3 2 (1/2) + 2αn (n − 1)/2 + αn

e2e5 G1,2G3,5 4 2 2αn (n/2) + 2αn

e3e5 G1,3G4,5 4 2 2αn (n/2) + 2αn

e4e5 G1,4G2,5 4 2 2αn (n − 2)/2 + αn

e1e2e5 W1W2G4,5 4 3 1 + 3αn (n − 1)/2 + 2αn

e1e3e5 W1G2,3G4,5 5 3 (1/2) + 3αn (n − 1)/2 + 2αn

e1e4e5 W1G2,4G3,5 5 3 (1/2) + 3αn (n − 1)/2 + 2αn

e2e3e5 W2G1,3G4,5 5 3 (1/2) + 3αn (n − 1)/2 + 2αn

e2e4e5 W2G1,4G3,5 5 3 (1/2) + 3αn (n − 1)/2 + 2αn

e3e4e5 W3G2,4G1,5 5 3 (1/2) + 3αn (n − 1)/2 + 2αn

e1e2e3e5 W1W2W3G4,5 5 4 (3/2) + 4αn (n − 3)/2 + αn

e1e2e4e5 W1W2W4G3,5 5 4 (3/2) + 4αn (n − 3)/2 + αn

e1e3e4e5 W1W3W4G2,5 5 4 (3/2) + 4αn (n − 3)/2 + αn

e2e3e4e5 W2W3W4G1,5 5 4 (3/2) + 4αn (n − 3)/2 + αn

e1e2e3e4e5 W1W2W3W4W5 5 5 (5/2) + 5αn (n − 5)/2

A table showing the chosen relations for n ≤ 5.

After the initial “base relation” (which requires that the first component of
b should be small), we seek a linear relation between e1 and 1 (or a multiple of
this e.g. N), and our only choice for this is W1. With the introduction of the
next exponent e2 we now look for a relation between 1, e1 and e2. For this we
can either choose W2 or G1,2, and as explained above G1,2 is the right choice.
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A more interesting situation arises when the fourth exponent e4 has been
introduced, and one looks for a relation regarding e1e4 and the previous ones.
The best choice in this case turns out to be W1G2,4. However, when considering
the next relation regarding e2e4 and the previous ones we may now use G1,2G3,4
because the left-hand side of this relation contains e1e3, e1e4, e2e3 and e2e4 all
of which are now present.

In general when looking for a relation regarding ei1ei2 . . . eis
and the previous

ones, one can use any relation Ru,v where u + v = s, subject to the required hj

being present earlier. It can be shown that the number of relations Ru+v with
v = t should be

(
n
t

)−(
n

t−1

)
regardless of the size s = u+v of the relation (though

of course this is subject to t ≤ s and s + 2t ≤ n). The contribution to βn for
such a relation is (n − s + t)/2 + tαn, and thus (summing over the possible n)
the total contribution to βn is shown below.

βn =
n∑

s=0

min(s,n−s)∑
t=0

((
n

t

)
−

(
n

t − 1

)) (
n − s + t

2
+ tαn

)

Assuming n is even this sum can be simplified to

βn =
(2n + 1)2n − (2n + 1)

(
n

n/2

)
4

+
(n + 1)2n − (2n + 1)

(
n

n/2

)
2

αn,

or if n is odd then the sum becomes

βn =
(2n + 1)2n − 4n

(
n−1

(n−1)/2

)
4

+
(n + 1)2n − 4n

(
n−1

(n−1)/2

)
2

αn.

Using equation 4 this means that if n is even, then

αn =
(2n + 1)2n − (2n + 1)

(
n

n/2

)
(2n − 2)2n + (4n + 2)

(
n

n/2

) , (5)

whilst if n is odd, then

αn =
(2n + 1)2n − 4n

(
n−1

(n−1)/2

)
(2n − 2)2n + 8n

(
n−1

(n−1)/2

) . (6)

Either way, using Stirling’s formula n! ' √
2πnnne−n we get that

(
2k

k

)
=

(2k)!
(k!)2

' 1√
πk

22k � 22k

as k → ∞, and then we have that αn → 1 as n → ∞.
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