
Description
Special case of a NP-complete problem.

Flag
WMCTF{1508363197285327134921463070467158008637697619610562046}

Writeup
The subset-sum problem is proved to be NP-complete, which means, under the assumption ,
no polynomial time algorithm exists to solve it.

However, some special cases of the subset-sum problem have trivial solutions. For instance, the
subset-sum problem of a super increasing sequence is quite easy to solve, which the Merkle-Hellman
public key cryptosystem (invented in 1978) is based on. Unfortunately, Shamir broke the (original)
Merkle-Hellman public key cryptosystem in 1982. In 1985, Lagarias and Odlyzko successfully reduced
the subset-sum problem with low density to the shortest vector problem in lattice. Although SVP is
proved to be NP-hard for randomized reductions by Ajtai, seemingly harder to handle, we have some
powerful tools to solve it in low dimension——the lattice reduction algorithms!

In this challenge, we are given an instance of the subset-sum problem with low density (= 0.8). No
doubt that this one belongs to the class that is easy to solve.

From the special construction of this subset-sum instance, we can see that not only the density is
small, the hamming weight (number of '1's in the solution vector) is small as well. We are given a set of
180 elements , and a target number , which is a sum of 160 of them.

To get the flag, we need to find a 0-1 vector

such that

One naive solution is to enumerate all the possible combinations and check whether the choice is
correct. Ways of choosing 160 elements out of 180 amount to

This requires enormous computing power and seems to be infeasible in the current (2020).

Since the hamming weight is fixed to be 160, we can construct a special lattice generated by the
following matrix:

https://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem

where is the hamming weight, and is a balance constant satisfying .

It's easy to show that the row vector is a point on the lattice and the
Euclidean norm of is quite small (). The smallest vector in the lattice is
likely to be . Thus, we can try find it by running lattice reduction algorithms.

Although this instance is an easy-to-solve one, the dimension is not that low—— is 180. Simply
running the lattice reduction algorithms such as LLL, or BKZ could rarely success.

Cleverly, we can reduce the dimension by forcing somewhere in to be "1" and removing those from
the lattice. In fact, this is a technique, called as "Zero-Forced Lattices", originating from the NTRU
technical report. The probability of (randomly) forcing a right coordination is

. And if want to force right coordinates, the probability is . As
can be seen from the following graph, the probability decreases exponentially as increases linearly.

This indicates that, even if we can gain much in search efficiency, by using the "Zero-Forced Lattices"
technique, due to the fact that the lattices have smaller dimensions, there is also great significance
loss of efficiency due to the fact that we need try many times to get a dimension-reduced lattice
which contains the target vector. Therefore, using this technique does not optimize much, and
sometimes may even need more computing power than not using this technique. Anyway, there must
exist an optimal choice of to achieve the most optimization. However, it is a little bit difficult (or just
because of laziness) to find such an optimal choice. Instead of doing some experiments to find the

https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech013.pdf

optimal choice, we choose to be 40.

On the other hand, since we need to keep running lattice reduction algorithms to search for the target
vector, this procedure can be easily speeded up linearly by multi-core CPUs. That is, assuming that it
requires 100 CPU hours on average to find the target vector, we can run this algorithm on 100 CPUs,
and we just need about 1 hour.

For the purpose of testing, we rented 4 cloud virtual machine instances from the cloud service
provider Tencent, where each instance was equipped with a 32-core CPU and 64GB RAM and only
cost 0.8RMB/hour. And then we ran our algorithm to search for the target vector. We were quite
lucky, it took just about 300+ CPU hours to find the solution:

(Actually, we had run in total 30000+ times lattice reduction algorithms before we found this
solution.)

The source code is shown as below (written in SageMath 9.1):

!/usr/bin/env sage
import random
import multiprocessing as mp

from json import load
from functools import partial

def check(sol, A, s):
 """Check whether *sol* is a solution to the subset-sum problem."""
 return sum(x*a for x, a in zip(sol, A)) == s

1
2
3
4
5
6
7
8
9

10
11
12
13

https://cloud.tencent.com/

def solve(A, n, k, s, r, ID=None, BS=22):
 N = ceil(sqrt(n)) # parameter used in the construction of lattice
 rand = random.Random(x=ID) # seed

 indexes = set(range(n))
 small_vec = None

 itr = 0
 total_time = 0.0
 while True:
 # 1. initalization
 t0 = cputime()
 itr += 1
 # print(f"[{ID}] n={n} Start... {itr}")

 # 2. Zero Force
 kick_out = set(sample(range(n), r))
 # (k+1) * (k+2)
 # 1 0 ... 0 a0*N N
 # 0 1 ... 0 a1*N N
 #
 # 0 0 ... 1 a_k*N N
 # 0 0 ... 0 s*N k*N
 new_set = [A[i] for i in indexes - kick_out]
 lat = []
 for i,a in enumerate(new_set):
 lat.append([1*(j==i) for j in range(n-r)] + [N*a] + [N])
 lat.append([0]*(n-r) + [N*s] + [k*N])

 # 3. Randomly shuffle
 shuffle(lat, random=rand.random)

 # 4. BKZ!!!
 m = matrix(ZZ, lat)
 t_BKZ = cputime()
 m_BKZ = m.BKZ(block_size=BS)
 print(f"[{ID}] n={n} {itr} runs. BKZ running time:
{cputime(t_BKZ):.3f}s")

 # 5. Check the result
 # print(f"[{ID}] n={n} first vector norm: {m_BKZ[0].norm().n(digits=4)}")
 for i, row in enumerate(m_BKZ):
 if check(row, new_set, s) and row.norm()^2 < 300:
 if small_vec == None:
 small_vec = row
 elif small_vec.norm() > row.norm():
 small_vec = row
 print(f"[{ID}] n={n} Good", i, row.norm()^2, row, kick_out)
 if row.norm()^2 == k:
 print(f"[{ID}] n={n} After {itr} runs. FIND SVP!!!\n"
 f"[{ID}] n={n} Single core time used:
{total_time}s")

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63

PS: We reverse 0 and 1 in our implementation.

Claim: The author of this challenge is a newbie in this area. If you have any better solutions or find any
mistake, please feel free to contact me through soreatu@gmail.com.

 return True

 # 6. log average time per iteration
 itr_time = cputime(t0)
 total_time += itr_time
 # average_time = float(total_time / itr)
 # print(f"[{ID}] n={n} average time per itr: {average_time:.3f}s")

def main():
 CPU_CORE_NUM = 32

 k, n, d = 160, 180, 0.8
 s, A = load(open("data", "r"))
 r = 40 # ZERO FORCE

 new_k = n - k
 new_s = sum(A) - s
 solve_n = partial(solve, A, n, new_k, new_s, r)
 with mp.Pool(CPU_CORE_NUM) as pool:
 reslist = pool.imap_unordered(solve_n, range(200, 200+CPU_CORE_NUM))

 # terminate all processes once one process returns
 for res in reslist:
 if res:
 pool.terminate()
 break

if __name__ == "__main__":
 main()

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

mailto:soreatu@gmail.com

	Description
	Flag
	Writeup

