
Description  
Special case of a NP-complete problem.

Flag  
WMCTF{1508363197285327134921463070467158008637697619610562046}

Writeup  
The subset-sum problem is proved to be NP-complete, which means, under the assumption , 
no polynomial time algorithm exists to solve it.

However, some special cases of the subset-sum problem have trivial solutions. For instance, the 
subset-sum problem of a super increasing sequence is quite easy to solve, which the Merkle-Hellman 
public key cryptosystem (invented in 1978) is based on. Unfortunately, Shamir broke the (original) 
Merkle-Hellman public key cryptosystem in 1982. In 1985,  Lagarias and Odlyzko successfully reduced 
the subset-sum problem with low density to the shortest vector problem in lattice. Although SVP is 
proved to be NP-hard for randomized reductions by Ajtai, seemingly harder to handle, we have some 
powerful tools to solve it in low dimension——the lattice reduction algorithms!

In this challenge, we are given an instance of the subset-sum problem with low density (  = 0.8). No 
doubt that this one belongs to the class that is easy to solve. 

From the special construction of this subset-sum instance, we can see that not only the density is 
small, the hamming weight (number of '1's in the solution vector) is small as well. We are given a set of 
180 elements , and a target number , which is a sum of 160 of them. 

To get the flag, we need to find a 0-1 vector

such that

One naive solution is to enumerate all the possible combinations and check whether the choice is 
correct. Ways of choosing 160 elements out of 180 amount to

This requires enormous computing power and seems to be infeasible in the current (2020). 

Since the hamming weight is fixed to be 160, we can construct a special lattice  generated by the 
following matrix:

https://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem


where  is the hamming weight, and  is a balance constant satisfying . 

It's easy to show that the row vector  is a point on the lattice and the 
Euclidean norm of  is quite small ( ). The smallest vector in the lattice  is 
likely to be . Thus, we can try find it by running lattice reduction algorithms.

Although this instance is an easy-to-solve one, the dimension is not that low——  is 180. Simply 
running the lattice reduction algorithms such as LLL, or BKZ could rarely success. 

Cleverly, we can reduce the dimension by forcing somewhere in  to be "1" and removing those from 
the lattice. In fact, this is a technique, called as "Zero-Forced Lattices", originating from the NTRU 
technical report. The probability of (randomly) forcing a right coordination is 

. And if want to force  right coordinates, the probability is . As 
can be seen from the following graph, the probability decreases exponentially as  increases linearly.

This indicates that, even if we can gain much in search efficiency, by using the "Zero-Forced Lattices" 
technique, due to the fact that the lattices have smaller dimensions, there is also great significance 
loss of efficiency due to the fact that we need try many times to get a dimension-reduced lattice 
which contains the target vector. Therefore, using this technique does not optimize much, and 
sometimes may even need more computing power than not using this technique. Anyway, there must 
exist an optimal choice of  to achieve the most optimization. However, it is a little bit difficult (or just 
because of laziness) to find such an optimal choice. Instead of doing some experiments to find the 

https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech013.pdf


optimal choice, we choose  to be 40.

On the other hand, since we need to keep running lattice reduction algorithms to search for the target 
vector, this procedure can be easily speeded up linearly by multi-core CPUs. That is, assuming that it 
requires 100 CPU hours on average to find the target vector, we can run this algorithm on 100 CPUs, 
and we just need about 1 hour.

For the purpose of testing, we rented 4 cloud virtual machine instances from the cloud service 
provider Tencent, where each instance was equipped with a 32-core CPU and 64GB RAM and only 
cost 0.8RMB/hour. And then we ran our algorithm to search for the target vector. We were quite 
lucky, it took just about 300+ CPU hours to find the solution:

(Actually, we had run in total 30000+ times lattice reduction algorithms before we found this 
solution.) 

The source code is shown as below (written in SageMath 9.1):

# !/usr/bin/env sage
import random
import multiprocessing as mp
 
from json import load
from functools import partial
 
 
def check(sol, A, s):
    """Check whether *sol* is a solution to the subset-sum problem."""
    return sum(x*a for x, a in zip(sol, A)) == s
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https://cloud.tencent.com/


def solve(A, n, k, s, r, ID=None, BS=22):
    N = ceil(sqrt(n)) # parameter used in the construction of lattice
    rand = random.Random(x=ID) # seed
 
    indexes = set(range(n))
    small_vec = None
    
    itr = 0
    total_time = 0.0
    while True:
        # 1. initalization
        t0 = cputime()
        itr += 1
        # print(f"[{ID}] n={n} Start... {itr}")
 
        # 2. Zero Force
        kick_out = set(sample(range(n), r))
        # (k+1) * (k+2)
        # 1 0 ... 0 a0*N   N
        # 0 1 ... 0 a1*N   N
        # . . ... . ...    .
        # 0 0 ... 1 a_k*N N
        # 0 0 ... 0 s*N    k*N
        new_set = [A[i] for i in indexes - kick_out]
        lat = []
        for i,a in enumerate(new_set):
            lat.append([1*(j==i) for j in range(n-r)] + [N*a] + [N])
        lat.append([0]*(n-r) + [N*s] + [k*N])
 
        # 3. Randomly shuffle
        shuffle(lat, random=rand.random)
 
        # 4. BKZ!!!
        m = matrix(ZZ, lat)
        t_BKZ = cputime()
        m_BKZ = m.BKZ(block_size=BS)
        print(f"[{ID}] n={n} {itr} runs. BKZ running time: 
{cputime(t_BKZ):.3f}s")
 
        # 5. Check the result
        # print(f"[{ID}] n={n} first vector norm: {m_BKZ[0].norm().n(digits=4)}")
        for i, row in enumerate(m_BKZ):
            if check(row, new_set, s) and row.norm()^2 < 300:
                if small_vec == None:
                    small_vec = row
                elif small_vec.norm() > row.norm():
                    small_vec = row
                    print(f"[{ID}] n={n} Good", i, row.norm()^2, row, kick_out)
                    if row.norm()^2 == k:
                        print(f"[{ID}] n={n} After {itr} runs. FIND SVP!!!\n"
                              f"[{ID}] n={n} Single core time used: 
{total_time}s")
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PS: We reverse 0 and 1 in our implementation.

Claim: The author of this challenge is a newbie in this area. If you have any better solutions or find any 
mistake, please feel free to contact me through soreatu@gmail.com.

 

                        return True
 
        # 6. log average time per iteration
        itr_time = cputime(t0)
        total_time += itr_time
        # average_time = float(total_time / itr)
        # print(f"[{ID}] n={n} average time per itr: {average_time:.3f}s")
 
 
 
def main():
    CPU_CORE_NUM = 32
 
    k, n, d = 160, 180, 0.8
    s, A = load(open("data", "r"))
    r = 40 # ZERO FORCE
 
    new_k = n - k
    new_s = sum(A) - s
    solve_n = partial(solve, A, n, new_k, new_s, r)
    with mp.Pool(CPU_CORE_NUM) as pool:
        reslist = pool.imap_unordered(solve_n, range(200, 200+CPU_CORE_NUM))
        
        # terminate all processes once one process returns
        for res in reslist:
            if res:
                pool.terminate()
                break
 
 
if __name__ == "__main__":
    main()
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