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Abstract

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs) are non-interactive
systems with short proofs (i.e., independent of the size of the witness) that enable verifying NP computa-
tions with substantially lower complexity than that required for classical NP verification. This is a short,
gentle introduction to Zero-Knowledge Arguments and zk-SNARKs. It recalls the history of proof systems
in cryptography and try to give an idea of their importance, the evolution of the soundness notion, the
way zk-SNARKs burst into cryptography and some well-known constructions.
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1 Introduction
The goal of this introduction is to provide a broad overview of zk-SNARKs, starting from explaining the
motivations for proof systems in cryptography and giving some early context, then recalling the zk-SNARK
history from the first plausible construction, through successive improvements, to today most efficient
instantiations. Finally, the more technical part of will formally define the notion of zk-SNARK and the
security requirements of these schemes and dive into the details of some celebrated constructions.

Proof Systems in Cryptography
A proof system in the cryptographical sense, is an interactive protocol by which one party (called the prover)
wishes to convince another party (called the verifier) that a given statement is true. In zero-knowledge
proof, we require further that the proof does not reveal anything more than the truth of the statement. At a
first glimpse, it sounds counter-intuitive, being able to prove something is correct, without revealing any
extra detail. Let’s see that it is perfectly possible by a very simple day-to-day example:

Example 1.1 (Playing card). Imagine that we pick a card A♦ from a complete deck of playing cards and we
want to prove to an adversary that we have a red card in our hand. We can prove that by revealing more
information than expressed in the statement, just by showing our card, say it was an ace of diamonds A♦.
Alternatively, we can choose to prove nothing more than the colour of our card by revealing to the adversary
all the black cards♣,♠ left in the deck. Our opponent should now be convinced we have a red card in our
hands, but it did not learn anything else about the value of our card.

Researches in zero-knowledge proofs have been prompted by authentication systems where one party
wants to prove its identity to a second party via some secret information such as a password but doesn’t
want to disclose anything about its secret password to the second party. This is called a zero-knowledge
proof of knowledge.

A proof of knowledge is an interactive protocol in which the prover succeeds in ”convincing” a verifier
that it knows something (a password, the steps of a computation, etc.) associated with the statement. For
example, if the statement is ”I am Alice.”, the prover should show knowledge of the secret password of
Alice; if the statement is ”I computed the function f(x) and obtained y.”, then the prover must convince its
verifier that it knows all the steps of this computation that lead to the result y.

What it means for a machine to have knowledge is defined formally in terms of an extractor. As the
program of the prover does not necessarily spit out the knowledge itself (as is the case for zero-knowledge
proofs), we will invoke another machine, called the knowledge extractor that, by having access to the prover,
can extract this witness (the knowledge).

The next step is the introduction of non-interactive proof systems, which reduce the number of rounds
of interaction between the prover and the verifier to only one. Some non-interactive protocols consist in
only one message from the prover to verifier; others need the verifier to generate some setting information,
called CRS, that can be made publicly available ahead of time and independently of the statement to be
proved later. To enforce security, and avoid cheating from the verifier, this CRS is often generated by a third
trusted party.

SNARKs
In the class of non-interactive proofs, a particularly interesting concept for proving integrity of results for
large computations is that of SNARK, i.e., succinct non-interactive argument of knowledge. By this term, we
denote a proof system which is:

succinct : the size of the proof is very small compared to the size of the statement or the witness, i.e., the
size of the computation itself,
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non-interactive: it does not require rounds of interaction between the prover and the verifier,
argument : we consider it secure only for provers that have bounded computational resources, which

means that provers with enough computational power can convince the verifier of a wrong statement,
knowledge-sound: it is not possible for the prover to construct a proof without knowing a certain so-called

witness for the statement; formally, for any prover able to produce a valid proof, there is an extractor
capable of extracting a witness (”the knowledge”) for the statement.

SNARK systems can be further equipped with a zero-knowledge property that enables the proof to be
done without revealing anything about the intermediate steps (the witness). We will call these schemes
zk-SNARKs.

A (zk-)SNARK protocol (as any other non-interactive proof system) is described by three algorithms
that work as follows:

• Gen is the setup algorithm, generating a necessary string crs used later in the proving process and
some verification key vrs, sometimes assumed to be secret to the verifier only. It is typically run by a
trusted party.

• Prove is the proving algorithm that takes as input the crs, the statement u and a corresponding
witnessw and outputs the proof π.

• Verify is the algorithm that takes as input the verification key vrs, the statement u and the proof π,
and returns 1 ”accept” the proof or 0, ”reject”.

SNARK schemes can be used for delegating computation in the following way: a server can run a
computation for a client and non-interactively prove the accuracy of the result. The client can verify the
result’s correctness in nearly-linear time in the size of the input (instead of running the entire computation
itself).
Organisation. Section 2 is rather informal and it gives some high-level intuition and the historical evolution
of (zero-knowledge) proofs and arguments.

Then, in Section 3 SNARKs are formally defined and the security requirements for these schemes are
stated. Then the focus lies on presenting the most outstanding constructions in the recent years: PCP-based
schemes in Section 4, QAP-based schemes in Section 5 and LIP-based SNARKs in Section 6. This part
contains many simplifications and examples to help the reader understand step-by-step the frameworks
of diverse SNARK constructions.

2 Proofs and Arguments.
Proof systems introduced by [GMR89] are fundamental building blocks in cryptography. Extensively studied
aspects of proof systems are the expressivity of provable statements and their efficiency.
Complexity Classes. In order to better understand the role of proofs and their classification, we will briefly
and informally introduce some basic complexity notions. The complexity classes will be defined by the
type of computational problem, the model of computation, and the resource that are being bounded and
the bounds. The resource and bounds are usually stated together, such as ”polynomial time”, ”logarithmic
space”, ”constant depth”, etc. We will introduce the main two fundamental complexity classes, P and NP.
They are used to classify decision problems.
P versus NP. On the one hand, the class P is the class of languages L, such that there exists an algorithm
that takes as input a bit string x and that can decide in polynomial time (in the size of x), whether x ∈ L.
We generally consider this class as the class of easy-to-decide languages and call them polynomial-time
algorithms, efficient algorithms.

On the other hand, the class NP is the class of languages L, such that there exists an algorithm, that
takes as input two bit strings x andw and that can decide in polynomial time (in the size of x), whetherw
is a valid proof or witness that x ∈ L. We suppose that for any statement x ∈ L, there exists such a witness
w, while otherwise (x /∈ L) no such witness exists. A formal definition is stated as follows:
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Definition 2.1 (The Class NP). A language L is in the class NP if there exists a polynomial time algorithm
RL such that

L = {x|∃w, |w| = poly(|x|) ∧RL(x,w) = 1}.

By restricting the definition of NP to witness strings of length zero, we capture the same problems as
those in P. While the class P is clearly included in NP, finding whether NP is included in P is one of the
most important open problems in computer science.

It basically asks whether being able to efficiently check a proof of a statement, is equivalent to being
able to check if a statement is true or false efficiently. Even if we don’t have any clear evidence for that,
most researchers strongly believe that P 6= NP.

In cryptography, considerable atention is given to the NP-hard complexity class. NP-hard is the defining
property of a class of problems that are, informally, ”at least as hard as the hardest problems in NP”.

We will often talk about NP-complete decision problems, the ones belonging to both the NP and the
NP-hard complexity classes.
Example: Satisfiability Problems SAT. As an example for a problem in NP, let us consider the problem of
boolean formula satisfiability (SAT). For that, we define a boolean formula using an inductive definition:

• any variable x1, x2, x3, . . . is a boolean formula
• if f is a boolean formula, then ¬f is a boolean formula (negation)
• if f and g are boolean formulas, then (f ∧ g) and (f ∨ g) are boolean formulas (conjunction / and,

disjunction / or).
The string ((x1 ∧ x2) ∧ ¬x2) would be a boolean formula.

A boolean formula is satisfiable if there is a way to assign truth values to the variables so that the formula
evaluates to true. The satisfiability problem SAT is the set of all satisfiable boolean formulas: SAT(f) := 1
if f is a satisfiable boolean formula and 0 otherwise.

The example above, ((x1 ∧ x2) ∧ ¬x2), is not satisfiable and thus does not lie in SAT. The witness for a
given formula is its satisfying assignment and verifying that a variable assignment is satisfying is a task that
can be solved in polynomial time.

The attractive property of this seemingly simple problem is that it does not only lie in NP, it is also
NP-complete. It means that it is one of the hardest problems in NP, but more importantly – and that is the
definition of NP-complete – an input to any problem in NP can be transformed to an equivalent input for
SAT in the following sense:

For anyNP -problem L there is a so-called reduction function f , which is computable in polynomial
time such that:

L(x) = SAT(f(x)).

Such a reduction function can be seen as a compiler: It takes source code written in some programming
language and transforms it into an equivalent program in another programming language, which typically is
a machine language, which has the same semantic behaviour. Since SAT is NP-complete, such a reduction
exists for any possible problem in NP.

Computational problems inside NP can be reduced to each other and, moreover, there are NP-complete
problems that are basically only reformulations of all other problems in NP.

2.1 Interactive Zero-Knowledge Proofs
By Definition 2.1, the class NP contains all languages for which an unbounded prover can compute
deterministic proofs, where a proof is viewed as a string of length polynomial in the statement x.

An interactive proof relaxes these requirements in two directions: first, the prover and the verifier are
allowed to use random coins, second, the output of a proof verification should only match the actual truth
of the statement with some reasonable enough probability and obviously, there is interaction between
parties.
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First Interactive Proofs. In two independent seminal papers, that won a Gödel prize, Babai [Bab85]
and Goldwasser, Micali, and Rackoff [GMR85] introduced the notion of interactive proofs also known as
Arthur-Merlin proofs.

Both works studied complexity classes where a computationally unbounded prover must convince a
polynomially bounded receiver of the truth of a statement using rounds of interactions. The main difference
between the notions studied in these papers is regarding the random coins of the verifier: in the work of
Babai, the verifier was required to reveal to the prover all coins that he used during the computation. Such
interactive proofs are referred to as public coin interactive proofs, as opposed to private coin interactive
proofs, in which the verifier might keep its internal state hidden.

The complexity classes corresponding to public coin interactive proofs were denoted AM [f(n)] by
Babai, where AM stands for Arthur-Merlin, n is the input length, and f(n) is the allowed number of rounds
of interaction. The complexity classes corresponding to private coin interactive proofs were denoted
IP [f(n)] by Goldwasser, Micali, and Rackoff.

Zero-Knowledge. As pointed out by Goldwasser, Micali, and Rackoff in their seminal paper [GMR85], an
essential question about interactive proofs in cryptography is whether the prover reveals more information
(or knowledge) to the verifier than the fact that x ∈ L. Indeed, in cryptography, we often want to hide
information. A proof that does not reveal any information to the verifier besides the membership of the
statement to the language is called a zero-knowledge proof. A way to formally define this property is to
consider a simulator that is able to behave exactly as the prover in the protocol and to produce a ”fake”
proof without knowing the witness. This should be done in a way that a verifier will not be able to tell if it
interacts with the real prover or with this simulator. Intuitively, we can then argue that a honestly generated
proof looks indistinguishable from a simulated value produced independently of the witness, meaning that
the proof reveals as much information about the witness as this value, so basically zero-knowledge. This
concept might seem very counter-intuitive and impossible to achieve. However, in [GMW86], Goldreich,
Micali, and Wigderson constructed zero-knowledge proofs for any language in NP, under a very weak
assumption, namely the existence of one-way functions.

Succinct Arguments. Related to efficiency and to optimization of communication complexity, it has
been shown that statistically-sound proof systems are unlikely to allow for significant improvements in
communication [BHZ87, GH98, GVW02, Wee05]. When considering proof systems for NP this means that,
unless some complexity-theoretic collapses occur, in a statistically sound proof system any prover has to
communicate, roughly, as much information as the size of the NP witness. The search for ways to beat
this bound motivated the study of computationally-sound proof systems, also called argument systems
[BCC88], where soundness is required to hold only against computationally bounded provers.

Assuming the existence of collision-resistant hash functions, Kilian [Kil92] showed a four-message
interactive argument for NP. In this protocol, membership of an instance x in an NP language with NP
machineM can be proven with communication and verifier’s running time bounded by p(λ, |M |, |x|, log t),
where λ is a security parameter, t is the NP verification time of machineM for the instance x, and p is an
universal polynomial.

Such argument systems where the communication complexity (and sometimes the work of the verifier)
sublinear in (or even independent of) the witness size are called succinct.
Zero-Knowledge Proofs and Arguments. A zero-knowledge proof or its relaxed version, argument, is a
protocol between a prover P and a verifier V for proving that a statement x is in a language L. Informally,
such a protocol has to satisfy three properties:
Completeness. An honest verifier always accepts a proof made by an honest prover for a valid word and

using a valid witness.
Soundness. No unbounded/PPT adversary can make an honest verifier accept a proof of a word x ∈ L

either statistically (for zero-knowledge proofs)/computationally (for zero-knowledge arguments).
Zero-knowledge It is possible to simulate (in polynomial-time) the interaction between a (potentially

malicious) verifier and an honest prover for any word x ∈ Lwithout knowing a witnessw.
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Honest-Verifier Zero-Knowledge. Honest-verifier zero-knowledge arguments or proofs are similar to the
ones defined above, except that we assume that the verifier is not malicious. The zero-knowledge property
applies only to verifiers that behave honestly and follow the protocol. This relaxation enables to construct
even more efficient schemes.

2.2 Interactive Arguments of Knowledge
The proofs and arguments we discussed in the previous section are tools used for membership statements,
i.e., proving membership of an instance x in a languageL. Restricting our attention to NP-languages, such
statements can be phrased as existential statements, of the form ∃w,RL(x,w) = 1. Proofs of knowledge
strengthen the security guarantee given by classical zero-knowledge proofs. While a zero-knowledge proof
suffices to convince the verifier of the existence of a witness w for the statement, a proof of knowledge
additionally shows that the prover knows such a witness.

Several remarks are in order here. First, we have to define what it means for a prover to know such
a witness. Intuitively, to make sure a prover has used the witness, it should be possible to ”extract” this
knowledge from that prover. Informally, this is done as follows: we say that an (efficient) algorithmA knows
a valuew if we can build a simulator Sim that, for any suchA that produces an accepting transcript, Sim
can extract the witnessw from its interaction withA.

Second, an important property of proofs of knowledge is that they can make sense even for statements
that are trivial from an existential point of view, i.e., for trivial languages for which a membership witness
always exists, but can be hard to compute. We illustrate this with a classical example:

Example 2.2 (Discrete Logarithm Language). Let LDLog(G, g) denote, for a cyclic group (G, ·) with a gener-
ator g, the following language:

LDLog(G, g) = {h ∈ G|∃ x ∈ Z, gx = h} .

As g is a generator of G, this is a trivial language: all elements of G belong to LDLog, ∀ h ∈ G,∃ x ∈ Z
such that gx = h, and this exponent x is not unique. However, computing such an integer x can be
computationally infeasible (because of the discrete logarithm assumption, see Assumption 2.3). Therefore,
while asking a prover to show the existence of the discrete logarithm of some word h is meaningless,
convincing a verifier that a prover knows the discrete logarithm of h in base g gives him a piece of non-
trivial information.

Assumption 2.3 (Discrete-Logarithm Assumption). Given a cyclic group G of order n ∈ N with a generator
g, the discrete logarithm assumption over G states, informally, that it is computationally infeasible given a
random group element h ∈ G to find an integer x ∈ Zn such that h = gx.

Hardness of Discrete Logarithm. Generic algorithms to solve discrete logarithm, which are independent
of the particular structure of the underlying group G, have a running time proportional to√n. In spite of
more than four decades of intense cryptanalytic effort, there exist certain groups in which we still do not
know any algorithm with better efficiency than the generic algorithms.
Sigma-Protocols. In this part we will describe a specific class of zero-knowledge proof systems to which
very efficient zero-knowledge protocols from the literature belong: Σ-protocols [CDS94].

Definition 2.4 (Sigma-Protocol). A Σ-protocol for a language L is a public-coin honest-verifier zero-
knowledge proof of knowledge, with a particular three-move structure:

Commit Phase. P sends to V some commitment values to some randomness,
Challenge Phase. V sends to P a uniformly random challenge e,
Response Phase. P sends to V an answer f(w, r, e) where f is some public function, andw is the witness

held by P
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Example: The Schnorr Protocol. In Example 2.2, we were mentioning the possibility to prove knowledge
of the discrete logarithm of some group element h in some base g, where g is the generator of some group
G. We now elaborate on this example by describing a Σ-protocol for proving knowledge of a discrete
logarithm. The protocol is given in Figure 1. It was first described in [Sch90], and it is commonly used as an
authentication protocol: given a public value h, the prover authenticates himself by proving his knowledge
of the secret value x associated to this public value (i.e., x is such that gx = h for a fixed generator g).

Prover Verifier
(x=logg h)

r←$ Zp
a← gr

a−−−−→
e←−−−− e←$ Zp

σ ← ex+ r
σ−−−−→ gσ

?= hea

Figure 1: Schnorr Σ-Protocol for DLog Language.

Rewinding. The standard solution to prove the security of Σ-protocols is to use a technique called
rewinding. The simulator will run the code of the prover, feeding it with the verifier inputs it requires, and
then rewind it to some previous state so as to feed it with different inputs. By doing so, the simulator will
be able to get several outputs of the prover with respect to different verifier inputs, starting from some
common state of the prover. Intuitively, this allows the simulator to cancel out some randomness that had
been introduced by the prover to mask its witness.
Security Analysis (Sketch). We show that the protocol given in figure Figure 1 is perfectly complete,
knowledge-extractable, and honest-verifier zero-knowledge.

Perfect completeness. It follows immediately by inspection: if σ = ex + r mod p, then gσ = gex+r =
(gx)egr = hea.

Honest-verifier zero-knowledge. Let Sim be a simulator which is given the common input (G, g, h) and
the code of the verifier. Sim selects a uniformly random tape for the verifier algorithm and runs it
with this random tape on a random input message a ∈ G. Once the Verifier outputs a challenge
e, Sim restarts the protocol, feeding Verifier algorithm with the same random tape and setting the
input message a to grh−e for a uniformly random r. Note that a is distributed exactly as in an honest
execution of the protocol. After the verifier outputs the challenge e (the verifier is assumed honest, so
it uses only the coins of his random tape. Hence, this challenge is the same than the one extracted by
Sim in the previous run of the verifier), Sim answers with σ := r. Observe that the equation gσ = hea
is satisfied for the chosen values of σ and a, and that the answer is distributed exactly as in an honest
run, hence the honest-verifier zero-knowledge property.

Knowledge-extraction. Consider a prover that runs in time T and produces an accepting answer with
non-negligible probability ε, and let Sim′ be a simulator which is given the code of the prover as input.
Once the prover outputs the first flow a, Sim′ writes a random e ∈ Zp on its message input tape,
and gets an answer σ. Then, Sim′ rewinds the prover to step 2 of the protocol, feeding it with a new
random e′ and receiving a corresponding new answer σ′. Observe that if both (σ, σ′) are accepting
answers, it holds that gσ = hea, gσ

′ = he
′
a, which gives gσ−σ′ = he−e

′ = (gx)e−e′ . In this case,
Sim′ can obtain x by computing (σ − σ′)(e− e′)−1 (mod p) (as we have e 6= e′ with overwhelming
probability). We argue the simulator Sim′ for a prover that runs in time T and has success probability
ε runs inO(T/ε) (the simulator repeats the rewinding procedure at most 1/ε times).
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2.3 Non-Interactive Proofs and Arguments
As we have seen previously, interactive proofs can be understood as a relaxation of the standard non-
interactive proofs (captured by the class NP), where we allow interaction (as well as random coins) between
the verifier and the prover. In this section, we will focus on protocols that do not require more communica-
tion, than a sole message from prover to verifier. In a non-interactive proof or argument, the prover just
sends one message (called the proof) to the verifier, and the latter can check it in order to accept it or not.
This proof is similar to a witness of an NP language, except that sending a witness often gives too much
knowledge to the verifier.

Non-Interactive Zero-Knowledge. Zero-knowledge proofs are randomized interactive proof systems
satisfying a specific zero-knowledge property. All the results mentioned previously relied on interactive
protocols with strong security guarantees without making any trust assumption whatsoever. This is known
as the standard model, and it provides the highest real-world security guarantees in an adversarial context.
In this model of computation, the adversary is only limited by the amount of time and computational
power available.

However, the absence of any form of trust strongly narrows the range of feasibility results: several
desirable properties, either related to the security or to the efficiency of interactive proof systems, are
proved impossible to achievable in the standard model. Consider the important question of building zero-
knowledge proofs with a small number of rounds of interaction. We know that there is no hope of building
a zero-knowledge proof system in the standard model with a single round of interaction for non-trivial
languages [GO94], and strong limitations are also known for two rounds of interaction [GO94, BLV03].

A natural theoretical question is to ask whether there are zero-knowledge randomized proofs that are
completely non-interactive (no round of interaction is needed). Such systems are called non-interactive
zero-knowledge proof systems (NIZK). This question is also very interesting from a practical point of view: in
the real world, interactivity means exchanging information over some network, which raises some latency
issues. Other motivations for NIZK proofs are their applications to numerous cryptographic primitives.

Common Reference String. In light of the strong limitations discussed above, an interesting research
direction is to find the minimal trust assumptions one could make that lead to a model in which practically
efficient NIZK proof systems can be built. Some impossibility results and studies of lower-bounds were
shown for various models, we refer to [Wee07] for more details.

The common reference string (CRS) model, introduced by Damgård [Dam00], captures the assumption
that a trusted setup in which all involved parties get access to the same string crs taken from some distri-
butionD exists. Schemes proven secure in the CRS model are secure given that the setup was performed
correctly. The common reference string model is a generalization of the common random string model, in
whichD is the uniform distribution of bit strings. The common reference string model has proven very
convenient to use for constructing a large variety of efficient primitives with strong security requirements.
In this model, the prover and the verifier both have access to a common bit string chosen by some trusted
party. In practice, such a bit string can be generated by a multi-party computation between users who are
believed not to collude.

First NIZK Schemes. Blum et al. first study the non-interactive zero-knowledge proof system and present
the common reference string model that is generally applied at present [BFM88, DMP90]. This first
construction of [BFM88] is a bounded NIZK proof system, meaning that for different statements in NP
language, the proof system has to use different CRSs and the length of the statement is controlled by the
length of CRS. Later, Blum et al. [DMP90] presented a more general (multi-theorem) NIZK proof system for
3SAT by improving the previous one, which allows to prove many statements with the same CRS.

Both [BFM88] and [DMP90] based their NIZK systems on certain number-theoretic assumptions
(specifically, the hardness of deciding quadratic residues modulo a composite number). Feige, Lapidot,
and Shamir [FLS90] showed later how to construct computational NIZK proofs based on any trapdoor
permutation.
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Much research has been devoted to the construction of efficient NIZK proofs [Dam93, KP98, BDP00],
but back then, the only known method to do so has been the ”hidden random bits” model. This hidden
random bits model assumes the prover has a string of random bits, which are secret to the verifier. By
revealing a subset of these bits, and keeping the rest secret, the prover can convince the verifier of the truth
of the statement in question. Improvements in the efficiency of NIZK proofs have come in the form of
various ways to set up a hidden random bits model and how to use it optimally.

Groth-Sahai Proofs. For a long time, two main types of NIZK proof systems were available: efficient but
heuristically secure proof systems in the random oracle model and inefficient proof systems in the hidden
random bits model [FLS90, Dam93, KP98, BDP00], which can be instantiated in the standard model, under
well-studied assumptions. This changed with the arrival of pairing-based cryptography, from which a
fruitful line of work (starting with the work of Groth, Ostrovsky, and Sahai [GOS06b, GOS06a]) introduced
increasingly more efficient NIZK proof systems in the standard model.

The Groth-Ostrovsky-Sahai proof system was the first perfect NIZK argument system for any NP lan-
guage and the first universal composable secure NIZK argument for any NP language. This resolved a
central open problem concerning NIZK protocols. The mechanism was dramatically different from the
previous works, such as Blum-Feldman-Micali proof system [BFM88] and Blum-Santis-Micali-Persiano
proof system [DMP90].

This line of work culminated with the framework of Groth-Sahai proofs [GS08], which identified a
restricted, yet very powerful class of languages for which efficient pairing-based NIZK could be designed,
with security based on essentially any standard assumption on pairing-friendly groups. This framework
greatly improved the efficiency and practicability of NIZK and created a new line of research on the
applications of NIZK.

Nevertheless, these schemes pose a limitation on the length of the proof statement in order to achieve
adaptive soundness against dishonest provers who may choose the target statement depending on the CRS.
Since the common reference string is public, it would be more natural to define soundness adaptively.

The first adaptively-sound statistical NIZK argument for NP that does not pose any restriction on the
statements to be proven requires non-falsifiable assumptions (see [AF07]). Abe and Fehr [AF07] have
demonstrated also an impossibility result: no adaptively-sound statistical zero-knowledge NIZK argument
for an NP-complete language can have a ”direct black-box” security reduction to a standard cryptographic
assumption unless NP ⊆ P/poly.

2.3.1 Fiat-Shamir Heuristic.

The Fiat-Shamir heuristic [FS87] is a heuristic method to convert Σ-protocols (see Section 2.2) into non-
interactive zero-knowledge proofs. It proceeds as follows: to prove the membership of an instance x to a
language L the prover first computes the first flow (the commitments) of a Σ-protocol for this statement.
Let a denote this first flow. Then, the prover sets e← RO(x, a), where RO is some hash function modeled
by a random oracle, and computes the last flow (step 3 of the Σ-protocol), using e as the challenge. While
this approach leads to very efficient NIZKs, it cannot be proven to work under any standard assumption
related to hash functions. Instead, the above methodology can be proven to work only in the random oracle
model.

Random Oracle. As already mentioned, security proofs are notoriously difficult to achieve in the standard
model, so in many proofs, cryptographic primitives are replaced by idealized versions.

The random oracle model (ROM) [BR93, CGH98] is an idealised cryptographic model and it assumes
the existence of a truly random function to which all parties involved in a protocol have access. Since
in reality, no such ideal function exists, random oracles are instantiated with hash functions, and one
heuristically assumes that a hash function behaves well enough to be a replacement for random oracles.
Random oracles allow proving protocols are secure while they are still practically efficient. On the negative
side, this model has its disadvantages, as it is seen more as heuristically secure since no truly random hash
functions can be used in practice. Some failures of the random oracle methodology when implemented
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in practice are shown in [CGH98]. They show that there exist signature and encryption schemes that are
secure in the ROM, but for which any implementation of the random oracle results in insecure schemes.

Fiat-Shamir-Compatible Hash Functions. Still, an open question is whether there exist concrete hash
families that are ”Fiat-Shamir-compatible” (i.e., that can guarantee soundness and potentially also zero-
knowledge for the transformed protocol). Initial results in this direction were negative. Indeed, Goldwasser
and Kalai [GK03] (following Barak [Bar01]) demonstrated a three-round, public-coin argument scheme for
which applying the Fiat-Shamir transform with any hash family never yields a sound protocol. Furthermore,
Bitansky et al. [BDG+13] show that, even when starting with a three-round proof, soundness of the Fiat-
Shamir transform with a concrete hash family cannot be proved via black-box reduction to standard, game-
based assumptions. In contrast, a recent line of work [KRR17, CCRR18, HL18] circumvents the [BDG+13]
impossibility result by using stronger than standard hardness assumptions to construct FS-compatible hash
families. Kalai et al. [KRR17] gave the first construction of a hash family that is FS-compatible for arbitrary
constant-round (public-coin) interactive proofs, albeit from complex obfuscation assumptions. Canetti et
al. ([CCRR18]) then provide alternative families without obfuscation, but using complex KDM-security
assumptions on secret-key encryption schemes. It is important to remark that the assumptions made by
[KRR17, CCRR18] are non-falsifiable and highly complex in the following sense: both involve an adversary
that is in part computationally unbounded.

In two recent companion articles, Canetti et al. [CCH+18, CLW18] construct explicit hash functions
that are FS-compatible for a rich class of protocols, and they prove their security under assumptions that
are qualitatively weaker than what was previously known. Using these hash families, new results can be
obtained for delegation of computation and zero-knowledge.

2.3.2 SNARG: Succinct Non-Interactive Arguments

Starting from Kilian’s protocol, Micali [Mic94] used the Fiat-Shamir heuristic to construct a one-message
succinct argument for NP whose soundness is set in the random oracle model. New more efficient systems
followed in the CRS model, they are called succinct non-interactive arguments (SNARGs) [GW11]. The area
of SNARGs became quite popular in the last years with the proposal of several constructions in the CRS
model, some of which gained significant improvements in efficiency [Gro10, Lip12, BCCT12, GGPR13,
PHGR13, BCG+13a, DFGK14, Gro16].

Non-Falsifiable Assumptions. Noteworthy is that all SNARG constructions are based on non-falsifiable
assumptions [Nao03b], a class of assumptions that is likely to be inherent in proving the security of
SNARGs (without random oracles), as stated by Gentry and Wichs in their work [GW11]. They show that no
construction of SNARGs can be proven secure via a black-box reduction from any falsifiable assumption
(unless that assumption is already false).

Most standard cryptographic assumptions are falsifiable (e.g., hardness of factoring, DLog, RSA,CDH,
etc.) in the sense of the formal notion of cryptographic falsifiability introduced by Naor [Nao03a]. Roughly
speaking, a computational hardness assumption is said to be falsifiable if it can be formulated in terms of
a challenge: an interactive protocol between an adversary and a challenger (verifier), where an efficient
adversary can convince the verifier to accept if and only if the assumption is false, meaning that if the
assumption were false, then it would be possible to prove it.

Intuitively, assumptions that are not falsifiable are more laborious to reason about, and therefore we
have significantly less confidence in them.

The knowledge assumptions are the most common non-falsifiable assumptions that we use in cryp-
tography. They are considered non-standard assumptions. Knowledge assumptions capture our belief
that certain computational tasks can be achieved efficiently only by (essentially) going through specific
intermediate stages and thereby obtaining, along the way, some specific intermediate values.

A number of different knowledge assumptions exist in the literature, most of which are specific number-
theoretic assumptions. Abstracting from such specific assumptions, one can formulate general notions of
extractability for one-way functions and other basic primitives (see [CD09]).
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Knowledge Soundness. SNARGs have also been strengthened to become SNARKs succinct non-interactive
arguments of knowledge [BCCT12, BCC+14]. SNARKs are SNARGs where computational soundness is
replaced by knowledge soundness. Intuitively speaking, this property says that every prover producing a
convincing proof must “know” a witness. On the one hand, knowledge soundness turns out to be useful in
many applications, such as delegation of computation where the untrusted worker contributes its own
input to the computation, or recursive proof composition [Val08, BCCT13].

On the other hand, the formalization of knowledge soundness in non-interactive protocols is a delicate
point since rewinding techniques mentioned in Section 2.2 do not apply anymore. Typically, the concept
that the prover ”must know” a witness is expressed by assuming that such knowledge can be efficiently
extracted from the prover by means of a so-called knowledge extractor. In SNARKs, extractors are inherently
non-black-box, and the definition of knowledge soundness requires that for every adversarial proverA
generating an accepting proof π there must be an extractor EA that, given non-black-box access toA (e.g.,
by getting the same input, including the random coins and the code ofA), outputs a valid witness.
SNARKs Framework. The framework for constructing SNARKs starts with finding a ”good” characterization
of the complexity class NP and take advantage of its specific properties for applying some compression
techniques on top.

Indeed, by choosing a suitable NP-complete problem representation (see Section 2), we are able to
construct generic SNARK schemes for NP-complete languages.

For example, many SNARKs have as a departure point the circuit satisfiability (Circ-SAT) problem.
Circ-SAT problem is the NP-complete decision problem of determining whether a given circuit has an
assignment of its inputs that makes the output true. A very important line of works focuses on building
SNARKs for circuit satisfiability [GGPR13, PHGR13, Lip13, DFGK14, Gro16, GMNO18] and have as a central
starting point the framework based on quadratic span programs introduced by Gennaro et al. in [GGPR13].
This framework will be discussed in details in (see Section 5).

Another very useful characterisation of the NP-complete class are the Probabilistically Checkable Proofs
(PCP). Using this characterisation, we can give a framework for constructing SNARKs that was exploited
by many works in the field [Mic94, CL08, GLR11, BCCT12, DFH12, BSBHR18].

Other possible clasifications for SNARK frameworks can come from the building blocks used in the
construction:

• PCP + Merkle Trees (e.g., CS Proofs [Mic94]), see Section 4.3
• Linear PCPs (e.g., Zaatar [SBV+12], [BCI+13, BCG+13b]), see Section 6
• IOPs/PCIPs (e.g., STARK [BSBHR18], Aurora [BSCR+18])
• MPC-Based (e.g., ZKBoo [GMO16], Ligero [AHIV17])
• Discrete-log Based (e.g., [BCC+16], Bulletproofs [BBB+18], Hyrax [PPY19])

For this gentle introduction, we will give an informal overview of some preliminary constructions and
then in Section 5 we will focus on the SNARKs constructions for circuits.

Post-Quantum Proof Systems. Almost all the proof systems mentioned so far1 are based on discrete-log
type assumptions, that do not hold against quantum polynomial-time adversaries [Sho99], hence the
advent of general-purpose quantum computers would render insecure the constructions based on these
assumptions. Efforts were made to design such systems based on quantum resilient assumptions.

Some more desirable assumptions that withstand quantum attacks are the lattice problems [Ajt96,
MR04]. Nevertheless, few non-interactive proof systems are built based on these. Some recent works
that we can mention are the NIZK constructions for specific languages, like [KW18, LLNW18, BBC+18]
and the two designated-verifier SNARG constructions [BISW17, BISW18], designed by Boneh et al. using

1We note that the original protocol of Micali [Mic94] is a zk-SNARK which can be instantiated with a post-quantum assumption
since it requires only a collision-resistant hash function – however (even in the best optimized version recently proposed in [BSBHR18])
the protocol does not seem to scale well for even moderately complex computations.
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encryption schemes instantiated with lattices. The first lattice-based designated-verifier zk-SNARK was
proposed by [GMNO18] and uses weaker assumptions than the work of Boneh et al. and additionally
achieves zero-knowledge and knowledge-soundness.
Recent Efficient SNARKs. In the past few years SNARKs got a lot of attention and many efficient new
constructions and implementations have emerged. To mention just a few of them: in the preprocessing
setting, as state-of-the-art we have Marlin [CHM+19] a verifier-efficient universal proving system based
on algebraic holographic proving systems (AHP), Sonic [MBKM19] for applications that use batched
verifications, Libra [XZZ+19], or Plonk [GWC19].

Some other constructions of SNARKs do not rely on trusted setup: Spartan [Set19], Halo [BGH19], and
Hyrax [PPY19]. However, the cost of transparent SNARKs can generally be seen in the proof sizes and
verification time. Other works relying on ROM, plausibly post-quantum secure: Aurora [BSCR+18] based
on Interactive Oracle Proofs (IOPs)– a notion of “multi-round PCPs”– for Rank-1 Constraint Satisfaction
(R1CS) problem, STARK [BSBHR18] and Fractal [COS19].

3 SNARKs: Definitions
A difficulty that arises when studying the efficiency of proofs for arbitrary NP statements is the problem of
representation. Proof systems are typically designed for abstract NP-complete languages such as circuit
satisfiability or algebraic constraint satisfaction problems, while in practice, many of the problem state-
ments we are interested in proving are easier (and more efficient) to express via algorithms written in a
high-level programming language. Modern compilers can efficiently transform these algorithms using
bounded unrolling into circuit-like constraint representations. Therefore, we choose to define SNARKs for
generic NP relations. The concrete relations we will consider are efficiently decidable binary relations of
satisfiability of a Boolean or arithmetic circuit.

Algorithms
LetR := Rλ be a efficiently decidable binary relation for an NP language LR. The asymptotic security no-
tions in this section are all quantified over λ-compatible relationsRλ and they therefore use the simplified
notationR instead ofRλ.

For pairs (u,w) ∈ Rwe call u the statement andw the witness.

Definition 3.1 (Argument System). A non-interactive argument forR is a quadruple of probabilistic poly-
nomial algorithms Π = (G,P,Ver,Sim) such that:

(crs, vrs, td)← G(1λ,R) the CRS generation algorithm takes as input some security parameter λ, a relation
R and outputs a common reference string crs and a trapdoor td.

π ← P(crs, u, w) the prover algorithm takes as input the crs, a statement u, and a witnessw. It outputs some
argument π.

b← Ver(crs, u, π) the verifier algorithm takes as input a statement u together with an argument π, and crs.
It outputs b = 1 (accept) if the proof was accepted, b = 0 (reject) otherwise.

π ← Sim(crs, td, u) the simulator takes as input a simulation trapdoor td and a statement u together with
a proof π and returns an argument π.

Properties

SNARGs. Non-interactive proof systems are generally asked to satisfy some security properties that simul-
taneously protect the prover from the disclosure of the witness, and the verifier from a forged proof. We
now state the security notions necessary to define a zk-SNARG:

12



Definition 3.2 (zk-SNARG). A non-interactive argument for R Π = (G,P,Ver,Sim) is a zk-SNARG if it
satisfies:

• Completeness. Given a true statement for the relationR, a honest prover P with a valid witness
should convince the verifier Ver with overwhelming probability. More formally, for all λ ∈ N and for
all (u,w) ∈ R:

Pr
[

Ver(crs, u, π) = 1 (crs, td)← G(1λ,R)
∧ (u,w) ∈ R π ← P(crs, u, w)

]
= 1− negl

• Computational Soundness. An argument system requires that no computationally bounded adver-
sary can make an honest verifier accept a proof of a false statement u 6∈ LR. More formally, for every
PPT adversarial proverA there is a negligible function negl such that:

Pr
[

Ver(crs, u, π) = 1 (crs, td)← G(1λ,R)
∧ u 6∈ LR (u, π)← A(crs)

]
= negl

• Succinctness. A non-interactive argument where the verifier runs in polynomial time in λ+ |u| and
the proof size is polynomial inλ is called a preprocessing succinct non-interactive argument (SNARG).
If we also restrict the common reference string to be polynomial in λ we say the non-interactive
argument is a fully succinct SNARG. Bitansky et al. [BCCT12] show that preprocessing SNARKs can
be composed to yield fully succinct SNARKs. The focus of this paper is on preprocessing SNARKs,
where the common reference string may be long.

• Statistical Zero-knowledge. An argument is zero-knowledge if it does not leak any information
besides the truth of the statement. Formally, if for all λ ∈ N, for all (u,w) ∈ R and for all PPT
adversariesA the following two distributions are statistically close:

D0 =
[
π0 ← P(crs, u, w) : (crs, td)← G(1λ,R)

]
,

D1 =
[
π1 ← Sim(crs, td, u) : (crs, td)← G(1λ,R)

]
.

3.0.1 Knowledge Soundness and SNARKs

SNARKs. If we replace the computational soundness of a SNARG with computational Knowledge Soundness
we obtain what we call a SNARK, a succinct non-interactive argument of knowledge. This stronger notion
implies the existence of an extractor that can intuitively be seen as a machine that has access to the code of
the prover and can essentially extract all the knowledge from it.

Definition 3.3 (Knowledge Soundness). The notion of knowledge soundness implies that there is an extractor
that can compute a witness whenever the adversary produces a valid argument. The extractor gets full access
to the adversary’s state, including any random coins.

• Knowledge Soundness. Formally, we require that for all PPT adversaries A there exists a PPT
extractor EA such that

Pr
[

Ver(crs, u, π) = 1 (crs, td)← G(1λ,R)
∧ (u,w) 6∈ R ((u, π);w)← A‖EA(crs)

]
= negl

Remark 3.4. The classical notion of knowledge soundness for SNARKs is even too week or not adapted for
some applications where adversarial provers are asked either not to modify valid proofs or they have extra
information that can help to produce proofs for statements such that a witness cannot be extracted.

More security notions for SNARKs that capture these properties are stated in Appendix A.
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Public vs. Designated Verifier. The arguments we defined so far use a public crs for proving and verifying
statements. They are commonly known as publicly verifiable. To make argument systems that are designated
verifiable, we change the setup algorithm to also outputs a secret verification state vrs which is needed
only for verification. For designated verifier SNARKs, it is important to stress that soundness holds against
adversaries that do not have access to this verification state vrs. A key question that arises in the design
and analysis of designated verifier arguments is whether the same common reference string can be reused
for multiple proofs. Formally, this “multi-theorem” setting is captured by requiring soundness to hold
even against a prover that makes adaptive queries to a proof verification oracle (note that in this setting
verification needs a secret value vrs so the prover cannot run it by itself). If the prover can choose its queries
in a way that induces noticeable correlations between the outputs of the verification oracle and the secret
verification state, then the adversary can potentially compromise the soundness of the scheme. Thus,
special care is needed to construct designated-verifier argument systems in the multi-theorem setting.

4 SNARKs: Construction from PCP
In this section, we provide some high-level intuition for some notable SNARK construction in the literature,
introduced by the work ”The hunting of the SNARK” [BCC+14].

This methodology to construct SNARKs is based on PCP characterization of NP, and it is first achieved
in the random oracle model (ROM), which gave only heuristical security. The idea is to apply the random-
oracle-based Fiat-Shamir transform to Kilian’s succinct PCP-based proof system [Kil92], achieving loga-
rithmic proof size and verification time.

Later, the construction is improved by removing the use of the random oracles and replacing them with
extractable collision-resistant hash functions (ECRH).

We first informally introduce Probabilistically Checkable Proofs (PCP), a characterisation of the NP-
class.

4.1 Probabilistically Checkable Proofs
The original version of the PCP Theorem [ALM+98] states that proofs for any NP language can be encoded
in such a way that their validity can be verified by only reading a constant number of bits, and with an error
probability that is upper bounded by a constant. The class PCP is a generalization of the proof verifying
system used to define NP, with the following changes:

Probabilistic Verifier. The verifier is probabilistic instead of deterministic. Hence, the verifier can have
different outputs for the same inputs x.

Random Access to the Proof. The verifier has random access to the proof string π. This means each bit in
the proof string can be independently queried by the verifier via a special address tape: If the verifier
desires say the i-th bit in the proof of the string, it writes i in base-2 on the address tape and then
receives the bit πi.

Constant Number of Queries. We are interested in probabilistic verification procedures that access only
a few locations in the proof [ALM+98], and yet are able to make a meaningful probabilistic verdict
regarding the validity of the alleged proof. Specifically, the verification procedure should accept any
valid proof (with probability 1) but rejects with probability at least 1/2 any alleged proof for a false
assertion.

Adaptiveness. Verifiers can be adaptive or non-adaptive. A non-adaptive verifier selects its queries based
only on its inputs and random tape, whereas an adaptive verifier can, in addition, rely upon bits it
has already queried in π to select its next queries.

The fact that one can (meaningfully) evaluate the correctness of proofs by examining few locations in
them is indeed surprizing and somewhat counter-intuitive. Needless to say, such proofs must be written in
a somewhat non-standard format, because standard proofs cannot be verified without reading them in full
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x ∈ {0, 1}n
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proof π
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Figure 2: A PCP verifier V for a language Lwith input x and random access to a string π.

(since a flaw may be due to a single improper inference). In contrast, proofs for a PCP system tend to be
very redundant; they consist of superfluously many pieces of information (about the claimed assertion),
but their correctness can be (meaningfully) evaluated by checking the consistency of a randomly chosen
collection of few related pieces. NP-proofs can be efficiently transformed into a (redundant) form that
offers a trade-off between the number of locations (randomly) examined in the resulting proof and the
confidence in its validity. A more formal definition follows:
Definition 4.1 (Probabilistically Checkable Proofs). Let L be a language and q, r : N→ N. A probabilisti-
cally checkable proof system PCP(r(n), q(n)) forL is a probabilistic polynomial-time oracle machine, called
verifier and denoted V , that satisfies the following conditions:

Efficiency. On input a string x ∈ {0, 1}n, and given a random access to a string π called the proof, V
uses at most r(n) random coins and makes at most q(n) queries to locations of π (see Figure 2). Then it
outputs 1 (for “accept”) or 0 (for “reject”).

Completeness. For every x ∈ L there exists a proof string π such that, on input x and access to oracle π,
machine V always accepts x.

Soundness. For every x /∈ L and every proof string π, on input x and access to oracle π, machine V
rejects xwith probability at least 1/2.

The error probability (in the soundness condition) of PCP systems can be reduced by successive
applications of the proof system. In particular, repeating the process for k times, reduces the probability
that the verifier is fooled by a false assertion to 2−k, whereas all complexities increase by at most a factor of
k. Thus, PCP systems of non-trivial query-complexity provide a trade-off between the number of locations
examined in the proof and the confidence in the validity of the assertion.

We say that a language L is in PCP(r(n), q(n)) if L has a (cr(n), dq(n))-verifier V for some constants
c, d.
Theorem 4.2 (PCP Theorem [ALM+98]).

NP = PCP(logn, 1)
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4.2 Merkle Trees and Hash Functions
The concept of hash (binary) trees is named after Ralph Merkle who patented it in 1979 [Mer79]. In a Merkle
tree every leaf node is labelled with the hash of a data block, and every non-leaf node is labelled with the
hash of the labels of its child nodes.

The structure of the tree allows for efficient mapping of arbitrarily large amounts of data and enables
easy identification of where changes in that data occur. This concept enables Merkle proofs, with which,
someone can verify that the hashing of data is consistent all the way up the tree and in the correct position
without having to actually look at the entire set of hashes. Instead, demonstrating that a leaf node is a part
of a given binary hash tree requires computing a number of hashes proportional to the logarithm of the
number of leaf nodes of the tree; this contrasts with hash lists, where the number is proportional to the
number of leaf nodes itself.
Collision-Resistant Hash Functions. A collision-resistant hash function (CRHF) is a function ensemble
for which it is hard to find two inputs that map to the same output. Formally:
Definition 4.3 (Collision Resistant Hash Family). A collection of function families H = {H}λ where each
H is a function familyH = {h : {0, 1}q(λ) → {0, 1}`(λ)} is collision-resistant if:

Efficient. The functions q(λ) and `(λ) are polynomially-bounded; furthermore, given λ and x ∈ {0, 1}q(λ)

the value h(x) can be computed in poly(λ) time.
Compressing. For all λwe have that q(λ) > `(λ).
Collision resistant. For all PPT algorithmsA, the following probability is negligible (in λ):

Pr[h←$H, (x, x′)← A(1λ, h) : x, x′ ∈ {0, 1}q(λ) ∧ x 6= x′ ∧ h(x) = h(x′)] = negl.

4.3 Kilian Interactive Argument of Knowledge from PCP
When PCP theorem [ALM+98] came out, it revolutionized the notion of “proof” – making the verification
possible in time polylogarithmic in the size of a classical proof. Kilian adapted this PCP characterization
of NP to the cryptographic setting, showing that one can use PCPs to construct interactive arguments
(i.e., computationally sound proof systems [BCC88]) for NP that are succinct – i.e., polylogarithmic also in
their communication complexity. In his work [Kil92], Kilian presents a succinct zero-knowledge argument
for NP where the prover P uses a Merkle tree (see Section 4.2) in order to provide to the verifier V “virtual
access” to a PCP proof π.

Merkle tree hashing enables the proverP to use a collision resistant hash function (CRHF) H to compute
a succinct commitment to the long stringπ ∈ {0, 1}q(λ) and later to locally open to any bit ofπ (in a succinct
manner). An example of such a Merkle tree is illustrated in Figure 3.

More precisely, to prove a statement x ∈ Lwe need the following interactions:
1. The verifier starts by sending the prover a CRHF H (in the sense of Definition 4.3).

The prover, on private input a witnessw, constructs a PCP-proof π.
In order to yield efficient verifiability, P cannot send to V the witnessw, nor π.
Instead, it builds a Merkle tree with the proof π as the leaf values (using the CRHF H from the verifier)
producing a root value.

2. The prover sends this root to V as a commitment to π.
3. V tosses a fixed polynomial number of random coins and sends them to P .

Both the prover P and the verifier V compute the PCP queries by internally running the PCP verifier
on input x and root.

4. The prover P sends back answers to those queries, together with “proofs”– called authentication
paths – that each answer is consistent with the root of the Merkle tree.
Finally, the verifier accepts if all the answers are consistent with the root value, and convinces the
PCP.
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Figure 3: A Merkle tree commiting to the string π. Each inner node of the tree is the hash value of the
concatenation of its two children: hij = h(πi‖πj), Hik = h(hij‖hj+1k), root = h(H14‖H58), i, j, k ∈ [8].

Kilian’s protocol is succinct, because the verifier V , invoking the PCP verifier, makes only a fixed
polynomial number of queries and each query is answered with an authentication path of some fixed
polynomial length, all independent of the length of the witness.

At a very high-level, the soundness follows from the fact that the Merkle tree provides the verifier “virtual
access” to the PCP proof, in the sense that given the root value of the Merkle tree, for every query q, it is
infeasible for a cheating prover to answer q differently depending on the queries. Therefore, interacting
with the prover is “equivalent” to having access to a PCP proof oracle. Then it follows from the soundness
of the PCP system that Kilian’s protocol is sound.

4.4 Micali’s CS Proofs
Micali [Mic94] showed how to make interactive arguments non-interactive by applying the Fiat-Shamir
heuristic (see Section 2.3.1) to Kilian’s construction. The idea was to apply a hash function, modeled as
a random oracle, to its PCP string both as a form of commitment and to non-interactively generate the
verifier’s PCP queries.
Private Information Retrieval (PIR). The work of [CL08] proposed the PCP+MT+PIR approach to “squash”
Kilian’s four-message protocol into a two-message protocol. To understand their techniques, we briefly
define Private Information Retrieval (PIR) schemes.

A (single-server) polylogarithmic private information retrieval (PIR) scheme ([CMS99, Lip05, GR05,
BV11]) allows a user to retrieve an item from a server in possession of a database without revealing which
item is retrieved. One trivial, but very inefficient way to achieve PIR is for the server to send an entire
copy of the database to the user. There are two ways to address this problem: one is to make the server
computationally bounded, and the other is to assume that there are multiple non-cooperating servers,
each having a copy of the database. We will consider the first one that assumes bounded running times
and succinctness of the server answers. More formally:
Definition 4.4 (Private Information Retrieval). A (single-server) polylogarithmic private information re-
trieval (PIR) scheme consists of a triple of algorithms (PEnc,PEval,PDec) that work as follow:

PEnc(1λ, i, r): outputs an encryptionCi of query i to a databaseDB using randomness r,
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PEval(DB,Ci): outputs a succinct blob ei ”containing” the answerDB[i],
PDec(ei): decrypts the blob ei to an answerDB[i].
The three proprieties a PIR scheme should satisfy are corectness, succinctness (the running time of both
PEnc,PEval should be bounded) and semantic security, in the sense that the encryptions of indexes iwith
the PEnc algorithm should not reveal information about their value.
The PCP+MT+PIR Approach. We have seen that in Kilian’s protocol, the verifier obtains from the prover a
Merkle hash to a PCP oracle and only then asks the prover to locally open the queries requested by the
PCP verifier. In [CL08]’s construction, the verifier also sends in the first message, a PIR-encrypted version
of the PCP queries (the first message of a PIR scheme can be viewed as an encryption to the queries); the
prover then prepares the required PCP oracle, computes and sends a Merkle hash of it, and answers the
verifier’s queries by replying to the PIR queries according to a database that contains the answer (as well as
the authentication path with respect to the Merkle hash) to every possible verifier’s query. In [CL08] the
soundness of the above scheme is based on the assumption that any convincing prover P must essentially
behave as an honest prover: Namely, if a proof is accepting, then the prover must have in mind a full
PCP oracle, which maps under the Merkle hash procedure to the claimed root, and such a proof π can be
obtained by an efficient extractor E .

They then showed that, if this is the case, the extracted string π must be consistent with the answers
the prover provides to the PCP queries, for otherwise the extractor can be used to obtain collisions of the
hash function underlying the Merkle tree. Therefore, the extracted string π also passes the PCP test, where
the queries are encrypted under PIR. Then, it follows from the privacy of the PIR scheme that, the string π
is “computationally independent” of the query. Hence from the soundness of PCP, they conclude that the
statement must be true.

4.5 SNARKs from PCP
We have mentioned two methodologies that can be applied to obtain SNARGs from PCPs, one is the
Fiat-Shamir heuristic in the random oracle model, the other is the PCP+MT+PIR Approach. In both cases,
we do not obtain knowledge soundness, but only plain adaptive soundness. Recent works [GLR11, BCCT12,
DFH12, BCC+14] have improved Micali’s construction by adding knowledge soundness and removing
the random oracles, replacing them with “extractable collision-resistant hash functions” (ECRHs), a non-
falsifiable extractability assumption.
Extractable Collision-Resistant Hash. We start by defining a natural strengthening of collision-resistant
hash functions introduced in Definition 4.3: the extractable collision-resistant hash functions (ECRH). An
ECRH function family satisfies the two following properties:

• it is collision-resistant in the standard sense of Definition 4.3,
• it is extractable in the sense that for any efficient adversary that is able to produce a valid evaluation

of the function there is an extractor that is able to produce a corresponding preimage.

The ECRH+PIR Approach. The [BCC+14] construction obtains the stronger notion of knowledge sound-
ness arguments, SNARKs, and also a pre-processed protocol rather than one-round of communication,
based on the more restrictive assumption that ECRHs exist. At a very high-level, their construction modifies
the PCP+MT+PIR approach by replacing the CRHF underlying the Merkle tree with an ECRH. The additional
features of this modified construction are:

(a) The verifier’s message can be generated offline independently of the theorem being proved and thus
we refer to this message as a verifier-generated reference string (VGRS);

(b) The input can be chosen adaptively by the prover based on previous information, including the
VGRS;

(c) The construction is an (adaptive) argument of knowledge;
(d) The running time of the verifier and the proof length are ”universally succinct”; in particular, they

do not depend on the specific NP-relation at hand.
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On the other hand, the scheme is only designated-verifier.
The main challenges in [BCC+14] construction and the required modifications they make to [CL08] are

briefly mentioned in the following.
Extracting a witness. To obtain knowledge soundness, they first instantiate the underlying PCP system

with PCPs of knowledge, which allow for extracting a witness from any sufficiently-satisfying proof oracle.
Adaptivity. In their setting, the prover is allowed to choose the claimed theorem after seeing the verifier’s

first message (or, rather, the verifier-generated reference string). In order to enable the (honest) verifier to do
this, they PIR-encrypt the PCP verifier’s coins rather than its actual queries (as the former are independent
of the instance), and require the prover to prepare an appropriate database (containing all the possible
answers for each setting of the coins, rather than a proof oracle).

From local to global extraction. Unlike [CL08], which directly assumed the ”global extraction” guarantees
from a Merkle tree, Bitansky et al. show that the ”local extraction” guarantee can be lifted using ECRH
functions instead of simple CRHF, to the ”global extraction” guarantee on the entire Merkle tree. The main
technical challenge in their construction is establishing this ”global” knowledge feature, more precisely,
to obtain an extracted PCP proof π that will be sufficiently satisfying for extracting a witness from a very
”local” one (namely, the fact that it is infeasible to produce images of the ECRH without actually knowing a
preimage).

To achieve this, they start from the root of the Merkle tree and ”work back towards the leaves”; that
is, extract a candidate proof π by recursively applying the ECRH-extractor to extract the entire Merkle
tree, where the leaves should correspond to π. However, recursively composing ECRH-extractors already
encounters a difficulty: each level of extraction incurs a polynomial blowup in computation size. Hence,
without making a very strong assumption on the amount of “blowup” incurred by the extractor, one can
only apply extraction a constant number of times. This problem is solved by replacing the binary Merkle
tree with a squashed Merkle tree, where the fan-in of each node is polynomial rather than binary as is
usually the case.
Knowledge Soundness. Given the previous discussion, knowledge soundness of the entire scheme is
shown in two steps:

Local Consistency. They show that whenever the verifier is convinced, the recursively extracted string
contains valid answers to the verifier’s PCP queries specified in its PIR queries. Otherwise, it is possible to
find collisions within the ECRH as follows. A collision finder could simulate the PIR-encryption on its own,
invoke both the extraction procedure and the prover, and obtain two paths that map to the same root but
must differ somewhere (as one is satisfying and the other is not) and therefore obtain a collision.

From Local to Global Consistency. Next, using the privacy guarantees of the PIR scheme, they show
that, whenever one extracts a set of leaves that are satisfying with respect to the PIR-encrypted queries, the
same set of leaves must also be satisfying for almost all other possible PCP queries and is thus sufficient
for witness-extraction. Indeed, if this was not the case then one would be able to use the polynomial-size
extraction circuit to break the semantic security of the PIR.

Furthermore, the [BCC+14] construction achieves a communication complexity and a verifier’s time
complexity bounded by a polynomial in the security parameter, the size of the instance, and the logarithm
of the time it takes to verify a valid witness for the instance, obtaining a fully-succinct SNARK.

5 SNARKs: Construction from QAP
We will present here the methodology for building SNARKs common to a family of constructions, some of
which represent the state of the art in the field.

Most constructions and implementations of SNARKs [PHGR13, Lip13, DFGK14, Gro16, GMNO18] have
as a central starting point the framework based on quadratic programs introduced by Gennaro et al. in
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[GGPR13]. This common framework allows to build SNARKs for programs instantiated as boolean or
arithmetic circuits.

This approach has led to fast progress towards practical verifiable computations. For instance, using
span programs for arithmetic circuits (QAPs), Pinocchio [PHGR13] provides evidence that verified remote
computation can be faster than local computation. At the same time, their construction is zero-knowledge,
enabling the server to keep intermediate and additional values used in the computation private.

Optimized versions of SNARKs based on QAP approach are used in various practical applications,
including cryptocurrencies such as Zcash [BCG+14], to guarantee anonymity via the ZK property while
preventing double-spending.

5.1 Circuits and Circ-SAT Problem
A SNARK scheme for a circuit has to enable verification of proofs for (Arithmetic or Boolean) Circ-SAT
problem, i.e., a prover, given a circuit has to convince the verifier that it knows an assignment of its inputs
that makes the output true. In the following definitions, we may see a circuit C as a logical specification of a
satisfiability problem.

Arithmetic Circuits. Informally, an arithmetic circuit consists of wires that carry values from a field F
and connect to addition and multiplication gates. See Figure 4 for an example.

Boolean Circuits. A boolean circuit consists of logical gates and of a set of wires between the gates. The
wires carry values over {0, 1}. See Figure 5 for an example.

Associated to any circuit, we define a satisfaction problem as follows:

Definition 5.1 (Circuit Satisfaction Circ-SAT). The circuit satisfaction problem of a circuit C : Iu × Iw →
{0, 1} is defined by the relationRC = {(u,w) ∈ Iu × Iw : C(u,w) = 1} and its language is LC = {u ∈ Iu :
∃w ∈ Iw, C(u,w) = 1}.

Standard results show that polynomially sized circuits are equivalent (up to a logarithmic factor) to
Turing machines that run in polynomial time, though of course the actual efficiency of computing via
circuits versus on native hardware depends heavily on the application; for example, an arithmetic circuit
for matrix multiplication adds essentially no overhead, whereas a boolean circuit for integer multiplication
is far less efficient.

5.2 From Circuits to Efficient NP Characterization
Back in 2013, Gennaro, Gentry, Parno and Raykova [GGPR13] proposed a new, influential characterization
of the complexity class NP using Quadratic Span Programs (QSPs), a natural extension of span programs
defined by Karchmer and Wigderson [KW93].

Some variants and improvements of QSPs followed. In [Lip13], Lipmaa gave a class of more efficient
quadratic span programs by combining the existing techniques with linear error-correcting codes.

Parno et al. [PHGR13] defined QAP, a similar notion for arithmetic circuits, namely Quadratic Arithmetic
Programs. More recently, an improved version for boolean circuits, the Square Span Programs (SSP) was
presented by [DFGK14]. Naturally, this led to a simplified version for arithmetic circuits in the same spirit,
Square Arithmetic Programs (SAP), proposed in [GM17].

These are methods to compactly encode computations, so as to obtain efficient zero-knowledge SNARKs.
The main idea is to represent each gate inputs and outputs as a variable. Then we may rewrite each gate as
an equation in some variables representing the gate’s input and output wires. These equations are satisfied
only by the values of the wires that meet the gate’s logic or arithmetic specification. By composing such
constraints for all the gates in the circuit, a satisfying assignment for any circuit can be specified first as a set
of quadratic equations, then as a constraint on the span of a set of polynomials, defining the corresponding
Quadratic/Square Span Program for the circuit. As a consequence, the prover needs to convince the verifier
that all the quadratic equations are satisfiable by finding a solution of the equivalent polynomial problem.
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5.3 Quadratic Arithmetic Programs (QAPs).
Before formally defining QAPs, we walk through the steps for encoding the toy example circuit in Figure 4
into an equivalent QAP.

First, we select two arbitrary values from some field F of order p: r5, r6 ∈ F to represent the two
multiplication gates (the addition gates will be compressed into their contributions to the multiplication
gates).

We define three sets of polynomials V = {vi(x)}, W = {wi(x)} and Y = {yi(x)}, i ∈ [6] by letting
the polynomials in V encode the left input into each multiplication gate, theW encode the right input into
each gate, and the Y encode the outputs. Thus, for the circuit in Figure 4, we define six polynomials for
each set V, W and Y , four for the input wires, and two for the outputs from the multiplication gates.

We define these polynomials based on each wire’s contributions to the multiplication gates. Specifically
all of the vi(r5) = 0, except v3(r5) = 1, since the third input wire contributes to the left input of c5’s
multiplication gate. Similarly, vi(r6) = 0, except for v1(r6) = v2(r6) = 1, since the first two inputs both
contribute to the left input of c6’s gate. ForW , we look at right inputs. Finally, Y represents outputs; none
of the input wires is an output, so yi(r5) = yi(r6) = 0 for i ∈ [4] and y5(r5) = y6(r6) = 1. We can use this
encoding of the circuit to efficiently check that it was evaluated correctly.

More generally, we define a QAP, an encoding of an arithmetic function, as follows.

output

×

+

c1 c2

×

c3 c4

c5

c6

Roots Polynomials in QAP (V,W,Y, t(x))
Gates Left inputs Right inputs Outputs

v3(r5) = 1 w4(r5) = 1 y5(r5) = 1
r5 vi(r5) = 0, wi(r5) = 0, yi(r5) = 0,

i 6= 3 i 6= 4 i 6= 5
v1(r6) = v2(r6) = 1 w5(r6) = 1 y6(r6) = 1

r6 vi(r6) = 0, wi(r6) = 0, yi(r6) = 0,
i 6= 1, 2 i 6= 5 i 6= 6
t(x) = (x− r5)(x− r6)

Figure 4: Arithmetic Circuit and Equivalent QAP. The polynomialsV = {vi(x)},W = {wi(x)},Y = {yi(x)}
and the target polynomial t(x) are defined in terms of their evaluations at two random values r5, r6 ∈ F,
one for each multiplicative gate.

Definition 5.2 (QAP). A Quadratic Arithmetic Program Q over the field F contains three sets of m + 1
polynomials V = {vi(x)}, W = {wi(x)} and Y = {yi(x)}, i ∈ {0, 1 . . .m} and a target polynomial t(x).
Suppose F is an arithmetic function that takes as input n elements of F and outputs n′ elements, for a total
ofN = n+ n′ I/O elements. Then, (c1, . . . , cN ) ∈ FN is a valid assignment of F ’s inputs and outputs, if and
only if there exist coefficients (cN+1, ..., cm) such that t(x) divides p(x), where:

p(x) :=
(
v0(x) +

m∑
i=1

civi(x)
)
·

(
w0(x) +

m∑
i=1

ciwi(x)
)
−

(
y0(x) +

m∑
i=1

ciyi(x)
)
. (1)

In other words, there must exist some polynomial h(x) such that h(x)t(x) = p(x). We say that the QAP
Q computes F . The size ofQ ism, and the degree d is the degree of t(x).
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In [PHGR13], the authors show that for any arithmetic circuit with dmultiplication gates andN I/O
elements, one can construct an equivalent QAP with degree (the number of roots) d and size (number of
polynomials in each set)m = d+N . Note that addition gates and multiplication-by-constant gates do not
contribute to the size or degree of the QAP. Thus, these gates are essentially ”free” in QAP-based SNARKs.

Building a QAPQ for a general arithmetic circuit C is fairly straightforward:
We pick an arbitrary root rg ∈ F for each multiplication gate g in C and define the target polynomial to

be t(x) =
∏
g(x− rg).

We associate an index i ∈ [m] to each input of the circuit and to each output from a multiplication gate.
Finally, we define the polynomials inV,W andY by letting the polynomials inV,W encode the left/right

input into each gate, and Y encode the outputs of the gates: vi(rg) = 1 if the i-th wire is a left input to gate
g, and vi(rg) = 0 otherwise. Similarly, we define the values of polynomialswi(rg) and yi(rg).

Thus, if we consider a particular gate g and its root rg, Equation (1) and the constraint p(rg) =
t(rg)h(rg) = 0 just says that the output value of the gate is equal to the product of its inputs, the very
definition of a multiplication gate.

For example, in the QAP for the circuit in Figure 4, if we evaluate p(x) at r5, we get c3c4 = c5, which
directly encodes the first multiplication gate, and similarly, at r6, p(x) simplifies to (c1 + c2)c5 = c6, that is,
an encoding of the second multiplication gate.

In short, the divisibility check that t(x) divides p(x) decomposes into d = deg(t(x)) separate checks,
one for each gate g and root rg of t(x), that p(rg) = 0.

5.4 Square Span Programs (SSPs)
Danezis et al. [DFGK14] found a way to linearize all logic gates with fan-in 2 in a boolean circuit. This
starts from the observation that any 2-input binary gate g(a, b) = cwith input wires a, b and output c can
be specified using an affine combination L = αa+ βb+ γc+ δ of the gate’s input and output wires that
take exactly two values, L = 0 or L = 2, when the wires meet the gate’s logical specification. This leads to
an equivalent single ”square” constraint (L− 1)2 = 1. We refer to Figure 5 for the truth table and simple
linearization of some gates in a toy example.

Composing such constraints, a satisfying assignment for any binary circuit can be specified first as a
set of affine map constraints, then as a constraint on the span of a set of polynomials, defining the square
span program for this circuit.

Due to their conceptual simplicity, SSPs offer several advantages over previous constructions for binary
circuits. Their reduced number of constraints lead to smaller programs, and to lower sizes and degrees for
the polynomials required to represent them, which in turn reduce the computation complexity required in
proving or verifying SNARKs.

Let C be a boolean circuit withmwires and n fan-in 2 gates. We formally define SSPs ([DFGK14]):

Definition 5.3 (SSP). A Square Span Program (SSP) S over the field F is a tuple consisting of m + 1
polynomials v0(x), . . . , vm(x) ∈ F[x] and a target polynomial t(x) such that deg(vi(x)) 6 deg(t(x)) for
all i = 0, . . . ,m. We say that the square span program SSP has size m and degree d = deg(t(x)). We say
that SSP accepts an input c1, . . . , cN ∈ {0, 1} if and only if there exist cN+1, . . . , cm ∈ {0, 1} such that t(x)
divides p(x), where:

p(x) :=
(
v0(x) +

m∑
i=1

civi(x)
)2

− 1.

We say that SSP S verifies a boolean circuit C : {0, 1}N → {0, 1} if it accepts exactly those inputs
(c1, . . . , cN ) ∈ {0, 1}N , satisfying C(c1, . . . cN ) = 1.

Theorem 5.4 ([DFGK14, Theorem 2]). For any boolean circuit C of m wires and n fan-in 2 gates and
for any prime p ≥ max(n, 8), there exist polynomials v0(x), . . . , vm(x) such that, for any distinct roots
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output

c9

c8

c6

c1 c2

c7

c3 c4

c5

Linearization of logic gates

OR (c1 ∨ c2 = c6) AND (c3 ∨ c4 = c7)
c1 c2 c6 c3 c4 c7
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1

−c1 − c2 + 2c6 ∈ {0, 1} c3 + c4 − 2c7 ∈ {0, 1}

XOR gate, input and output bits

XOR (c6 ⊕ c7 = c8) IN ({ci}8
i=1) OUT (c9)

c6 c7 c8 ci c9
0 0 0
0 1 1 ∈ {0, 1} 1
1 0 1
1 1 0

c6 + c7 + c8 ∈ {0, 2} 2ci ∈ {0, 2} 3− 3c9 ∈ {0, 2}

Figure 5: Boolean circuit and the linearization of its logic gates.

r1, . . . , rd ∈ F, C is satisfiable if and only if:

d∏
i=1

(x− ri) divides p(x) :=
(
v0(x) +

m∑
i=1

civi(x)
)2

− 1,

where c1, . . . , cm ∈ {0, 1} correspond to the values on the wires in a satisfying assignment for the circuit.
Define t(x) :=

∏d
i=1(x−ri), then for any circuit C of mwires and n gates, there exists a degree d = m+n

square span program S = (v0(x), . . . , vm(x), t(x)) over a field F of order p that verifies C.

Building a SSP S for a general boolean circuit C : {0, 1}N → {0, 1}with mwires and n fan-in 2 gates
follows some simple steps (See Figure 5 for a toy example).

First, we represent an assignment to the wires of C as a vector c ∈ {0, 1}m. The assignment is a
satisfying witness for the circuit if and only if the inputs belong to {0, 1}, the inputs respect all gates, and
the output wire is 1. It is easy to impose the condition ci ∈ {0, 1}, ∀i ∈ [m] by requiring 2ci ∈ {0, 2}.
Scaling some of the gate equations from Figure 5 by a factor 2, we can write all gate equations in the form
L = αci + βcj + γck + δ ∈ {0, 2}. We want the circuit output wire cout to have value 1. We do that by
adding the condition 3− 3cout to the linearization of the output gate.

We further define a matrix V ∈ Zm×d and b ∈ Zd such that cV + b ∈ {0, 2}d corresponds to
the linearization of the gates and of inputs/outputs as described above. The existence of c such that
cV + b ∈ {0, 2}d is equivalent to a satisfying assignment to the wires in the circuit. We can rewrite this
condition as

(cV + b) ◦ (cV + b− 2) = 0 ⇐⇒ (cV + b− 1) ◦ (cV + b− 1) = 1, (2)
where ◦ denotes the Hadamard product (entry-wise multiplication).

Next step consists in defining the polynomials {vi(x)}mi=0. Let r1, . . . rd be d distinct elements of a field
F of order p for a prime p ≥ max(d, 8). Define v0(x), v1(x), . . . vm(x) as the degree d − 1 polynomials
satisfying v0(rj) = bj − 1 and vi(rj) = Vi,j .
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We can now reformulate condition 2 again: The circuit C is satisfiable if and only if there exists c ∈ Fm

such that for all rj :
(
v0(rj) +

m∑
i=1

civi(rj)
)2 = 1.

Since the evaluations in r1, . . . rd uniquely determine the polynomial vc(x) = v0(x) +
∑m
i=1 civi(x)

we can rewrite the condition 2:
d−1∏
i=1

(x− ri) divides
(
v0(x) +

m∑
i=1

civi(x)
)2

− 1.

Proving on Top of Quadratic and Square Programs. Once we have stated the corresponding quadrat-
ic/square span program associated to the (boolean or arithmetic) circuit, the steps in building a proof
protocol from this polynomial problem are the following:
Prover. The prover has to solve a SSP (or a QAP) that consists of a set of polynomials {vi(x)} (or respectively

{vi(x)}, {wi(x)}, {yi(x)}). In both cases, the task is to find a linear combination {ci} of its input
polynomials – vc(x) = v0(x) +

∑
i civi(x) (and wc(x), yc(x) for QAP) – in such a way that the

polynomial p(x) defined by the program is a multiple of another given polynomial t(x).
For a given input, the worker evaluates the circuit C directly to obtain the output and the values of the
internal circuit wires. These values correspond to the coefficients {ci}mi=1 of the quadratic/square
program.

Verifier. From the other side, the verification task consists of checking whether one polynomial divides
another polynomial. This can be facilitated by the prover if it sends the quotient polynomial h(x)
such that t(x)h(x) = p(x), which turns the task of the verifier into checking a polynomial identity
t(x)h(x) = p(x). Put differently, verification consists into checking that t(x)h(x) − p(x) = 0,
i.e., checking that a certain polynomial is the zero polynomial.

Efficiency. Since the size of these polynomials is very large, the verifier will need a more efficient way to
check the validity of the proof, than to multiply such big polynomials. Also, from the point of view
of succinctness, sending the polynomials h(x), vc(x) (and wc(x), yc(x) for QAP), each of degrees
proportional with the number of gates in the original circuit, is not optimal for our purposes.

Evaluation in a Random Point. So, instead of actually computing polynomial products, the verifier
chooses a secret random pointsand ask the prover to send the evaluationsh(s), vc(s) (andwc(s), yc(s)
for QAP) instead of the full polynomials and only checks that t(s)h(s) = p(s). So the polynomial
operations are simplified to field multiplications and additions independent of the degree of those
polynomials.

Soundness. Checking a polynomial identity only at a single point instead of at all points reduces the
security, but according to Schwartz–Zippel lemma any two distinct polynomials of degree d over a
field F can agree on at most a d/ |F| fraction of the points in F. So, if we choose the field F carefully,
s←$ F is assumed to be picked at random and since t(x)h(x), p(x) are non-zero polynomials, the
possibility of a false proof to verify is bounded by a negligible fraction (where the evaluationsh(s), p(s)
are part of, or can be computed from the proof elements). Of course, the point s should be not known
in advance by the prover when it generates its polynomials. This is essential to avoid cheating
strategies that lead to proofs of false statements.

Encoding the Random Point. We have concluded that the key factor for the soundness to hold is the
secrecy of the evaluation point s. The prover should not know in advance this value when computing
the solution to SSP vc(x), h(s) (respectevely vc(x), wc(x), yc(x), h(s) for QAP). Nevertheless, the
prover should be allowed to compute the evaluation of its polynomials in s. Finding a method of
hiding s that, at the same time, allows the prover to perform linear operations over this hidden value
and the verifier to check the proof, is the key trick in order to build a SNARK.
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5.5 Encoding Schemes
The main ingredient for an efficient preprocessing SNARK is an encoding scheme Enc over a field F that
hides the evaluation point s and has important properties that allow proving and verifying on top of
encoded values.

A formalisation of these encoding schemes for SNARKs was initially introduced in [GGPR13]:
Definition 5.5 (Encoding Scheme). An encoding scheme Enc over a field F is composed of the following
algorithms:

K(1λ)→ (pk, sk) a key generation algorithm that takes as input some security parameter and outputs
some secret state sk together with some public information pk.

Enc(s)→ z an encoding algorithm mapping a field element s to some encoding value. Depending on the
encoding algorithm, Enc will require either the public information pk generated from K, or the secret
state sk. To ease notation, we will omit this additional argument.

The above algorithms must satisfy the following properties:

• additively homomorphic: Intuitively, we want the encoding scheme to behave well when applying
linear operations Enc (x+ y) = Enc(x) + Enc(y).

• quadratic root detection: There exists an efficient algorithm that, given Enc(a0), . . . ,Enc(at), and
the quadratic polynomial pp ∈ F[x0, . . . , xt], can distinguish if pp(a1, . . . , at) = 0. We will use an
informal notation for this check

pp(Enc(a0), . . . ,Enc(at))
?= 0.

• image verification: There exists an efficiently computable algorithm ImVer that can distinguish if an
element c is a correct encoding of a field element (ImVer(c)→ 0/1).

Publicly vs Designated-Verifier Encoding. In some instantiations, the encoding algorithm will need a
secret state sk to perform the quadratic root detection. Then, in the resulting SNARK, the verification
algorithm does need a verification key vrs = sk.

If such a secret state is not needed, we will consider sk =⊥ and call it ”one-way” or publicly-verifiable
encoding.
Bilinear Groups. At present, the only candidates for such a ”one-way” encoding scheme that we know of are
based on bilinear groups, where the the bilinear maps support efficient testing of quadratic degrees without
any additional secret information. A symmetric bilinear group is given by a description (p,G,GT , e), where:

• p is a λ-bit prime
• G,GT are cyclic groups of order p
• e : G×G→ GT is a bilinear map: ∀a, b ∈ Zp : e(ga, gb) = e(g, g)ab
• if 〈g〉 = G, then 〈e(g, g)〉 = GT

Example 5.6 (Pairing-based encoding scheme). Consider a symetric bilinear group of prime order q de-
scribed by gk := (p,G,GT , e). Let g be a generator of G. We can implement an encoding scheme with the
previous properties as:

Enc(a) = ga.

• additively homomorphic: To compute en encoding of a sum g(a1+a2), we just multiply the respective
group elements ga1ga2 = ga1+a2 .
For a known polynomial h(x), this property can be used to compute an encoding of an evaluation
h(s) =

∑d
i=0 his

i in some point s, given the coefficients {hi}di=1 and the encodings of powers of s,
{gsi}di=1. This is the linear combination

d∏
i=0

(gs
i

)hi = g
∑d

i=0
his

i

= gh(s)
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QAP
{vi(x)}i
{wi(x)}i
{yi(x)}i

t(x) ∈ F[x]

s←$ F

Setup → (crs, vrs)
Encode d powers of s
si and αsi for α←$ F
to enable polynomial
evaluation for a QAP
solution vc, wc, yc, h

Encode terms βvi(s),
βwi(s), βyi(s) (β←$ F)
to enforce solution
in the proper span
vc ∈ Span(vi),
wc ∈ Span(wi),
yc ∈ Span(yi)

(Encode randomness
for zero-knowledge)

Prove
Find solution:
vc, wc, yc, h
Evaluate in s,
Compute extra
terms to prove
– knowledge: α-terms
– good span: β-terms

Verify
Check extraction
Check divison in s
Check linear span

crs

crs
vrs

π

Figure 6: Simplified roadmap from QAP to a SNARK protocol.

• quadratic root detection: Given for example the following quadratic polynomial pp0 = x1x2 + x2
3

and some encodings (ga1 , ga2 , ga3) use the bilinear map to check the equality:

e(g, g)pp0(a1,a2,a3) = e(g, g)a1a2+a2
3 = e(ga1 , ga2) · e(ga3 , ga3) ?= e(g, g)0.

• image verification: Typically, it is straightforward to determine whether an element is in the group G,
and all elements of G are valid encodings.

Remark 5.7. Remark that none of the three properties requires any secret state, this leads to a publicly-
verifiable SNARK, to perform the checks; the verification algorithm does not need anything else than the
pairing function e that is public. Note also that this encoding scheme is deterministic.

For instance, the family of elliptic curvesG := E(Fq). described in [BF01] satisfies the above description.

5.6 Pairing-Based Assumptions

The q-type Assumptions. Non-static q-type assumptions are parametrized by q, and they, are actually, a
family of assumptions. They may be used in a static way for a fixed q, but if a security proof relies on the
non-static version, then q is usually related to the number of oracle queries an adversary makes, to the size
of input or to the number of computational steps necessary in a protocol.
The q–Power Diffie-Hellman (q-PDH). Let the generator G denote the algorithm by which bilinear groups
are generated. G inputs a security parameter λ and outputs a description of a bilinear group gk :=
(p,G,GT , e)←$G(1λ). Roughly speaking, the q-PDH assumption says that given g, gs, . . . gsq

, gs
q+2
, . . . gs

2q

it is hard to compute y = gs
q+1 . A heuristic argument for believing in the q-PDH hardness is given by Groth

in [Gro10].
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Assumption 5.8 (q-PDH). The q-Power Diffie-Hellman (q-PDH) assumption holds for the bilinear group
generator G if for all PPT adversariesAwe have, on the probability space gk← G(1λ), g←$ G and s←$ Zp:

Advq-pdh
A := Pr

[
q-PDHA(gk, 1λ) = 1

]
= negl.

where q-PDHA is defined as in Figure 7.

q-PDHA(gk, 1λ)

g←$ G
s←$ Zp

τ ← (g, gs, . . . gs
q

, gs
q+2

, . . . gs
2q

)
y ← A(gk, τ)

return (y = gs
q+1

)

q-SDHA(gk, 1λ)

g←$ G
s←$ Zp
σ ← (g, gs, . . . gs

q

)
(r, y)← A(gk, σ)
return (y = g1/(s−r))

Figure 7: Games for q-PDH and q-SDH assumptions.

The q–Strong Diffie-Hellman Assumption (q-SDH). The Strong Diffie-Hellman assumption [BB08] says
that given gk, g←$ G and a set of powers (g, gs, . . . gsq ) for a random exponent s←$ Zp, it is infeasible to
compute y = g

1
s−r for a chosen r ∈ Zp.

Assumption 5.9 (q-SDH). The q–Strong Diffie-Hellman assumption holds relative to a bilinear group
generator G if for all PPT adversariesAwe have, on the probability space gk← G(1λ), g←$ G and s←$ Zp:

Advq-sdh
A := Pr

[
q-SDHA(gk, 1λ) = 1

]
= negl.

where q-SDHA is the experiment depicted in Figure 7.

5.6.1 Knowledge Assumptions

All SNARK constructions are inherently based on non-falsifiable assumptions [Nao03b], as stated by Gentry
and Wichs in their work [GW11].

The framework of such an assumption is as follows: a knowledge assumption considers any PPT
algorithm M that, on input a security parameter λ returns a secret output and a public output. Then, the
assumption states that if M satisfies certain efficiency or hardness properties (to be defined later), then
for any adversary algorithmA trying to simulate M, there exists an efficient algorithm EA that, given the
security parameter,A’s public output and random bits, can compute a matching secret output.
The q-Power Knowledge of Exponent Assumption. This class of assumptions have the following flavor:
if an efficient algorithm, given the description of a finite group along with some other public information,
computes a list of group elements that satisfies a certain algebraic relation, then there exists a knowledge
extractor that outputs some related values that “explain” how the public information was put together to
satisfy the relation. The knowledge of exponent (KEA) assumption was the first of this type, introduced
by Damgard [Dam92]. It says that given g, gα in a group G it is infeasible to create c, ĉ so ĉ = cα without
knowing a such that c = ga and ĉ = (gα)a.

The q-power knowledge of exponent assumption (q-PKE) is a generalization of KEA. It says that
given the successive powers of some random value s ∈ Zp encoded in the exponent {g, gs, gs2

, . . . , gs
q

,
gα, gαs . . . gαs

q}, it is infeasible to create c, ĉ where ĉ = cα without knowing a0, a1, . . . aq that satisfy
c =

∏q
i=0(gsi)ai . This is more formally defined (in the symmetric case) by the existence of an extractor:
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q-PKEgk,Z,A,EA(1λ)

g←$ G, s←$ Zp
σ ← (g, gs, . . . gs

q

, gα, gαs . . . gαs
q

)
z ← Z(gk, σ)
(c, ĉ; {ai}qi )← (A‖EA)(σ, z)

return (ĉ = cα) ∧ c 6=
q∏
i

(gs
i

)ai

Figure 8: Game for q-PKE assumption.

Assumption 5.10 (q-PKE). The q-Power Knowledge of Exponent (q-PKE) assumption holds relative to
a bilinear group given by the description gk and for the class Z of auxiliary input generators if, for every
non-uniform PPT auxiliary input generator Z ∈ Z and non-uniform PPT adversary A, there exists a
non-uniform PPT extractor EA such that:

Advq-pke
Enc,Z,A,EA := Pr

[
q-PKEEnc,Z,A,EA = true

]
= negl,

where q-PKEEnc,Z,A,EA is the game depicted in Figure 8.

These assumptions can be reformulated in terms of encodings in the sense of Section 5.5, as a general-
ization of the exponential function in the bilinear group.

5.7 SNARKs from QAP
In what follows, we will present the celebrated SNARK construction of Parno et al. [PHGR13].

Equipped with the encoding tool we have defined above, we are ready to construct a QAP-based SNARK
scheme. A very high-level overview of the SNARK from QAP construction is provided in Figure 6. This
diagram gives some intuition, but hides a lot of important details of the scheme.

For the sake of the presentation, the description of the protocol is given for a general encoding scheme
Enc. In Figure 9 there is a SNARK construction for an instantiation based on bilinear group encodings (see
Example 5.6).

Generation Algorithm Gen(1λ, C)→ (crs, vrs)
The setup algorithm Gen takes as input 1λ and the circuit C withN input/output values. It generates

a QAP Q of size m and degree d over a field F, that verifies C. It defines Imid = {N + 1, . . .m}. Then, it
runs the setup for an encoding scheme Enc (with secret state sk, or without, sk =⊥). Finally, it samples
α, βv, βw, βy, s← F such that t(s) 6= 0, and returns (vrs = sk, crs) where crs is:

crs :=
(
Q,Enc,{Enc(1),Enc(s), . . . ,Enc(sd),Enc(α),Enc(αs), . . . ,Enc(αsd)},

{Enc(βv),Enc(βw),Enc(βy)}

{Enc(βvvi(s))}i∈Imid , {Enc(βwwi(s))}i∈[m], {Enc(βyyi(s))}i∈[m]

) (3)

Prover Prove(crs, u, w)→ π
The prover algorithm Prove, on input some statement u := (c1, . . . , cN ), computes a witness w :=

(cN+1 . . . cm) and vmid(x) =
∑
i∈Imid

civi(x), vc(x) =
∑
i∈[m] civi(x), wc(x) =

∑
i∈[m] ciwi(x), yc(x) =
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Gen(1λ, C)

gk := (p,G,GT , e)
s, α, βv, βw, βy ←$ Zq
Q :=

(
{vi, wi, yi}i∈[m], t

)
Imid = {N + 1, . . .m}

crs :=
(
Q, gk,

{gs
i

, gαs
i

}di=0

gβv , {gβvvi(s)}i∈Imid

gβw , {gβwwi(s)}i∈[m]

gβy , {gβyyi(s)}i∈[m]

)
return crs

Prove(crs, u, w)

u := (c1, . . . , cN )
w := ({ci}i∈Imid )

vmid :=
∑
i∈Imid

civi(x)

H := gh(s), Ĥ := gαh(s)

Vmid := gvmid(s), V̂mid := gαvmid(s)

W := gwc(s), Ŵ := gαwc(s)

Y := gyc(s), Ŷ := gαyc(s)

B := gβvvc(s)+βwwc(s)+βyyc(s)

π := (H, Ĥ, Vmid , V̂mid ,

W, Ŵ , Y, Ŷ , B)

Ver(crs, u, π)

Extractability check:

e(H, gα) = e(g, gĤ)

e(Vmid, g
α) = e(g, gV̂mid )

e(W, gα) = e(g, gŴ )

e(Y, gα) = e(g, gŶ )
Divisibility check:

e(H, gt(s)) = e(V,W )/e(Y, g)
Linear span check:

e(B, g) = e(V, gβv ) · e(W, gβw )

· e(Y, gβy )

Figure 9: SNARK from QAP.

∑
i∈[m] ciyi(x) such that :

t(x) divides p(x) = vc(x)wc(x)− yc(x).

Then, it computes the quotient polynomial h(x) :

h(x) := p(x)
t(x) . (4)

By using the additively homomorphic property of the encoding scheme Enc and the values in the crs, the
prover computes encodings of the following polynomial evaluations in s:

H := Enc(h(s)), Ĥ := Enc(αh(s)),

Vmid := Enc(vmid(s)), V̂mid := Enc (αvmid(s)) ,

W := Enc(wc(s)), Ŵ := Enc (αwc(s)) ,

Y := Enc(yc(s)), Ŷ := Enc (αyc(s)) ,
B := Enc (βvvc(s) + βwwc(s) + βyyc(s)) .

(5)

Where the polynomial vmid(x) :=
∑
i∈Imid

civi(x). Since the values of ci, where i ∈ [N ] correspond to
the input u (which is also known to the verifier), the verifier can compute the missing part of the full linear
combination vc(x) for {vi(x)} and encode it by itself

V := Enc(vc(s)).

The proof π consists of elements (H, Ĥ, Vmid, V̂mid,W, Ŵ , Y, Ŷ , B).
Verifier Ver(vrs, u, π)→ 0/1

Upon receiving a proof π and a statement u, the verifier, uses the quadratic root detection algorithm of
the encoding scheme Enc to verify that the proof satisfies:
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Extractability terms. Ĥ ?= αH, V̂mid
?= αVmid, Ŵ

?= αW, Ŷ
?= αY .

The above terms are engineered to allow extractability using a knowledge assumption.

Divisibility check. H · T ?= V ·W − Y where T = Enc(t(s)), V := Enc(vc(s)) and can be computed
using crs. This corresponds to the polynomial division constraint.

Linear span check.B ?= βvV + βwW + βyY . This check makes sure that the polynomials vc(x), wc(x)
and yc(x) are indeed linear combinations of the initial set of polynomials {vi}i, {wi}i, {yi}i.

5.7.1 Knowledge Soundness

The intuition is that it is hard for the prover, who knows the CRS but not α, to output any pair (H, Ĥ) where
H encodes some value h and Ĥ = Enc(αh) unless the prover knows a representation h =

∑
i∈[d] his

i and
applies the same linear combination to αsi in order to obtain Ĥ =

∑
i∈[d] hiαs

i. Knowledge of exponent
assumptions (PKE defined in Assumption 5.10) formalize this intuition; it says that for any algorithm
that outputs a pair of encoded elements with ratio α, there is an extractor that ”watches” the algorithm’s
computation and outputs the corresponding representation (the coefficients of a linear combination).

We will give an overview of the proof in tree steps, one for each of the three checks in the verification
algorithm:

Extractability terms. From the pairs of encodings (H, Ĥ), (Vmid, V̂mid), (W, Ŵ ), (Y, Ŷ ), based on the
q-PKE assumption (see Assumption 5.10) we can extract out coefficients for polynomials vmid(x), wc(x),
yc(x), h(x).

Divisibility check. If the check H · T ?= V ·W − Y where T = Enc(t(s)) verifies, then h(s)t(s) =
vc(s)wc(s)− yc(s). If indeed h(x)t(x) = vc(x)wd(x)− yc(x) as polynomials, the soundness of our QAP
implies that we have extracted a true proof. Otherwise, h(x)t(x) − vc(x)wd(x) − yc(x) is a nonzero
polynomial having s as a root, which allows us to solve a q-type assumption instance.

Linear span check. In the scheme, the α-terms V̂mid = Enc(αvmid), Ŵ = Enc(αwc) and Ŷ = Enc(αyc)
are used only to extract representations of the encoded terms with respect to the power basis, and not as a
linear combination in the set of polynomials {vi(x), wi(x), yi(x)}i∈[m]. This extraction does not guarantee
that the polynomials vmid(x), wc(x), yc(x) lie in the appropriate spans. Therefore, the final proof termB is
needed to enforce this. B can only be computed by the prover from the crs by representing vc, wc, yc as a
linear combination of corresponding {vi(x), wi(x), yi(x)}i∈[m]. This is then checked in the verification
algorithmB

?= βvV + βwW + βyY . If this final check passes, but polynomials vc, wc, yc lie outside their
proper span, then the one can solve d-power Diffie-Hellman problem (see Assumption 5.8 for q = d).

5.7.2 Adding Zero-Knowledge

The construction we just described is not zero-knowledge, since the proof terms are not uniformly dis-
tributed and may reveal information about the witness, i.e., about the polynomials vc(x) =

∑
i civi(x),

wc(x), yc(x), h(x). To make this proof statistically zero-knowledge, we will randomize the polynomials
vc(x), wc(x), yc(x), h(x) by adding a uniformly sampled value, while keeping the divisibility relation be-
tween them. The idea is that the prover just uses some random values δv, δw, δy ∈ F and performs the
following replacements in the proof to randomize its original polynomials from above:

• v′mid(x) := vmid(x) + δvt(x),
• w′c(x) := wc(x) + δwt(x),
• y′c(x) := yc(x) + δyt(x),
• h′(x) = h(x) + δvwc(x) + δwvc(x) + δvδwt

2(x)− δyt(x).

By these replacements, the values Vmid,W and Y , which contain an encoding of the witness factors,
basically become indistinguishable from randomness and thus intuitively they are zero-knowledge. For
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this modification to be possible, additional terms containing the randomness δv, δw, δy should be added
to the crs to enable the prover to mask its proof and the verifier to check it. For a formal proof and other
details, we refer the reader to the original work [PHGR13].

5.7.3 Groth16: SNARK in the Generic Group Model

Gen(1λ,R)

(sk, pk)← K(1λ), α, β, γ, δ←$ F∗, s←$ F∗,

crs =
(

QAP, pk,
{

Enc(si)
}d−1

i=0
,

{
Enc

(
βvi(s) + αwi(s) + yi(s)

γ

)}
i∈Iio

,{
Enc

(
βvi(s) + αwi(s) + yi(s)

δ

)}
i∈Imid

,

{
Enc

(
sit(s)
δ

)}d−1

i=0

)
vrs = (sk, crs, s, α, β, γ, δ)
return (crs, vrs)

Prove(crs, u, w)

u = (c1, . . . , c`), c0 = 1
w = (c`+1, . . . , cm)
vc(x) =

∑m

i=0 aivi(x)
vmid(x) =

∑
i∈Imid

civi(x)

wc(x) =
∑m

i=0 ciwi(x)
wmid(x) =

∑
i∈Imid

ciwi(x)

yc(x) =
∑m

i=0 ciyi(x)
ymid(x) =

∑
i∈Imid

ciyi(x)

h(x) = (vc(x)wc(x)−yc(x))
t(x)

r, u←$R∗

fmid = βvmid(s) + αwmid(s) + ymid(s)
δ

A = Enc
(
α+ vc(s) + rδ

)
B = Enc

(
β + wc(s) + uδ

)
C = Enc(fmid + t(s)h(s)

δ
+ uA+ rB − urδ)

return π = (A,B,C)

Ver(vrs, u, π)

π = (A,B,C)
vio(x) =

∑
i∈Iio

civi(x)

wio(x) =
∑

i∈Iio
ciwi(x)

yio(x) =
∑

i∈Iio
ciyi(x)

fio = βvio(s) + αwio(s) + yio(s)
γ

F = Enc(fio)
Check AB = Enc(α)Enc(β) + γF + δC

Sim(vrs, u)

a, b←$R, A = Enc(a), B = Enc(b)

gio = βvio(s) + αwio(s) + yio(s)
δ

G = Enc(gio)

C = Enc(ab− αβ)
δ

−G

return π = (A,B,C)

Figure 10: Groth16 Construction from QAP.

The state-of-the-art for SNARK for QAPs is the celebrated result of Groth [Gro16] that achieves proof
size of three group elements in the Generic Group Model.

This construction is simplified compared to the one in [PHGR13]. We observe that the proof elements
are not duplicated with respect to some random factor α and this is not needed for the extraction, since
the security relies on a stronger model, the GGM and not on q-PKE assumption.
Generic Group Model. The generic group model [Sho97, Mau05] is an idealised cryptographic model,
where algorithms do not exploit any special structure of the representation of the group elements and can
thus be applied in any cyclic group. In this model, the adversary is only given access to a randomly chosen
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encoding of a group, instead of efficient encodings, such as those used by the finite field or elliptic curve
groups used in practice. The model includes an oracle that executes the group operation.

To describe Groth’s construction, we use the generic encoding formalisation introduced before. We
consider the relationR implemented as an arithmetic circuit for a total number of wiresm. We denote
by Iio = {1, 2, . . . `} the indices corresponding to the public input and public output values of the circuit
wires (corresponding to the statement u) and by Imid = {`+ 1, . . .m}, the wire indices corresponding to
private input and non-input, non-output intermediate values (for the witnessw).

5.8 SNARKs from SSP
Another notable SNARK that achieves reduced computation complexity for proving evaluation of boolean
circuits represented as SSPs is the construction of Danezis et al. [DFGK14]. In this short survey, we will
restrict ourself to a sketched description of their scheme prioritizing intuition to rigurosity. We refer the
reader to [Nit19], Chapter 4, for a more technical presentation of a version of SSP-based SNARKs.

The key element of Danezis’ et al. SNARK is the use of SSP language. The square span program require
only a single polynomial vc(x) to be evaluated for verification (instead of two for earlier QSPs, and three
for QAPs) leading to a simpler and more compact setup, smaller keys, and fewer operations required for
proof and verification. The resulting, SSP-based SNARK may be the most compact construction to date.
The proof consists of just 4 group elements; they can be verified in just 6 pairings, plus one multiplication
for each (non-zero) bit of input, irrespective of the size of the circuit C : {0, 1}N → {0, 1}.

Gen(1λ, C)

gk := (p,G,GT , e)
S := (v0, . . . , vm, t)
Imid := {N + 1, . . .m}
g←$ G, s, α, β←$ Zq
crs :=

(
S, gk,

{gs
i

, gαs
i

}di=0,

gβ , {gβvi(s)}i∈Imid , g
βt(s))

return crs

Prove(crs, u, w)

u := (c1, . . . , cN ) ∈ {0, 1}N

w := ({ci}i∈Imid )

vmid :=
∑
i∈Imid

civi(x)

H := gh(s), Vmid := gvmid(s)

V̂ := gαvc(s), Bmid := gβvmid(s)

π := (H,Vmid, V̂ , Bmid)

Ver(crs, u, π)

V := g

∑
i∈[N]

civi(s)
Vmid

Extractability check:

e(V, gα) = e(g, V̂ )
Divisibility check:

e(H, gt(s)) = e(V, V̂ )/e(g, g)−1

Linear span check:

e(Bmid, g) = e(Vmid, g
β)

Figure 11: SNARK from SSP. A solution to S : vc(x) =
∑
i civi(x), h(x) := vc(x)2−1

t(x) .

6 SNARKs: Construction from LIP
The QAP approach was generalized in [BCI+13] under the concept of Linear Interactive Proof (LIP), a form
of interactive ZK proofs where security holds under the assumption that the prover is restricted to compute
only linear combinations of its inputs.

These proofs can then be turned into (designated-verifier) SNARKs by using an extractable linear-only
encryption scheme.

6.1 Linear-Only Encoding Schemes
An extractable linear-only encoding scheme is an encoding scheme where any adversary can output a valid
new encoding only if this is a linear combination of some previous encodings that the adversary had as
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input (intuitively this “limited malleability” of the scheme, will force the prover into the above restriction).
At high-level, a linear-only encoding scheme does not allow any other form of homomorphism than linear
operations.

EXT− LOEnc,M,A,EA(1λ)

(pk, sk)← K(1λ)

(m1, . . . ,md)← M(1λ)
σ ← (pk,Enc(m1), . . . ,Enc(md))
(ct; a1, . . . , ad, b)← (A‖EA)(σ; z)
where ct = (Enc(m))

return ct 6∈
{

Enc(
∑d

i=1 aimi + b)
}

Figure 12: Game for Extractable Linear-Only.

Definition 6.1 (Extractable Linear-Only, [BCI+13]). An encoding scheme Enc satisfies extractable linear-
only property if for all PPT adversariesA there exists an efficient extractor EA such that, for any sufficiently
large λ ∈ N, any ”benign” auxiliarly input z and any plaintext generation algorithm M the advantage

Advext-lo
Enc,M,A,EA := Pr[EXT− LOEnc,M,A,EA = true] = negl.

where EXT− LOEnc,M,A,EA is defined as in Figure 12.

In order for this definition to be non-trivial, the extractor EA has to be efficient. Otherwise a naive way
of finding such a linear combination (a1, . . . , ad) could be just to run the adversaryA, obtainA’s outputs,
decode them, and then output a zero linear function and hard-code the correct values in the constant
term.
Indistinguishability under Chosen-Plaintext Attacks. A stronger notion of linear-only encoding schemes
is linear-only encryption schemes that additionally satisfy semantic security in the sense of the game de-
picted in Figure 13. We say that Enc is IND-CPA secure if, for any PPT adversaryA, it holds that

Advind-cpa
A = Pr

[
IND-CPAEnc,A(1λ)

]
− 1

2 = negl.

where Advind-cpa
A is the advantage of an adversaryAwhen playing the game IND-CPA,A.

As examples of linear-only encryption schemes, [BCI+13] propose variants of Paillier encryption [Pai99]
(as also considered in [GGPR13]) and of ElGamal encryption [ElG85] (in those cases where the plaintext is
guaranteed to belong to a polynomial-size set, so that decryption can be done efficiently). These variants
are “sparsified” versions of their standard counterparts; concretely, a ciphertext includes not only Enc(x),
but also Enc(αx), for a secret element α in the message space. (This ”sparsification” follows a pattern
found in many constructions conjectured to satisfy ”knowledge-of-exponent” assumptions).
Non-Adaptive SNARK. In [BCI+13], they start from the notion of linear-targeted malleability, weaker than
linear-only property, that is closer to the definition template of Boneh et al. [BSW12]. In such a notion, the
extractor is replaced by an efficient simulator. Relying on this weaker variant, they are only able to prove
the security of their preprocessing SNARKs against non-adaptive choices of statements (and still prove
soundness, though not knowledge soundness, if the simulator is allowed to be inefficient, i.e., obtain a
SNARG instead of a SNARK). Concretely, the linear-only property rules out any encryption scheme where
ciphertexts can be sampled obliviously; instead, the weaker notion does not, and thus allows for shorter
ciphertexts.
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IND-CPAEnc,A(1λ)

(pk, sk)← KeyGen
(
1λ
)

(m0,m1)← A (pk)
b←$ {0, 1}
c← Enc (pk,mb)
b′ ← A (pk, c)
return b′ = b

Figure 13: Game for IND-CPA security notion.

Definition 6.2 (Linear-Targeted Malleability, [BCI+13]). An encoding scheme Enc satisfies linear-targeted
malleability property if for all PPT adversariesA and plaintext generation algorithm M there exists a PPT
simulator Sim such that, for any sufficiently large λ ∈ N, any ”benign” auxiliarly input z the following two
distributionsD0(λ),D1(λ) in Figure 14 are computationally indistinguishable.

(pk, st, {mi}, {Dec(ctj)})← D0(1λ)

(pk, sk)← K(1λ)

(st,m1, . . . ,md)← M(1λ)
σ ← (pk,Enc(m1), . . . ,Enc(md))
{ctj}nj=1 ← A(σ; z)
where Dec(ctj) 6=⊥

(pk, st, {mi}, {dj})← D1(1λ)

(pk, sk)← K(1λ)

(st,m1, . . . ,md)← M(1λ)

( #”a 1, · · · #”a n,
#”

b )← Sim(pk; z)

dj :=
∑d

i=1 ajimi + bi, ∀ j ∈ [n]

Figure 14: DistributionsD0 andD1 in Linear Targeted Malleability.

6.2 Linear Interactive Proof
A linear interactive proof (LIP) is defined similarly to a standard interactive proof [GMR85], except that each
message sent by a prover (either an honest or a malicious one) must be a linear function of the previous
messages sent by the verifier. The SNARK designed by [BCI+13] only makes use of two-message LIPs in
which the verifier’s message is independent of its input. LIP can be obtained from a Linear PCP, a PCP, for
which it is possible to do the verification in such a way that it is sufficient for an honest prover to respond
with a certain linear function of the verifier’s queries.

Bitansky et al. show first a transformation from any Linear PCP into a two-message LIP with similar
parameters. Unlike in the Linear PCP model, if the verifier simply forwards to the LIP prover the queries
generated by the Linear PCP verifier, there is no guarantee that the LIP prover will apply the same linear
function to each of these queries. Thus, the transformation loses a constant factor in the knowledge error.
Construction of SNARK from LIP. Bitansky et al. [BCI+13] construct a publicly-verifiable preprocessing
SNARK from LIPs with low-degree verifiers. Note that, if we aim for public verifiability, we cannot use
semantically-secure encryption to encode the message of the LIP verifier, because we need to “publicly
test” (without decryption) certain properties of the plaintext underlying the prover’s response. The idea,
implicit in previous publicly-verifiable preprocessing SNARK constructions, is to use linear-only encodings
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(rather than encryption) that do allow such public tests, while still providing certain one-wayness prop-
erties. When using such encodings with a LIP, however, it must be the case that the public tests support
evaluating the decision algorithm of the LIP and, moreover, the LIP remains secure despite some “leakage”
on the queries. They show that LIPs with low-degree verifiers (which they call algebraic LIPs), combined
with appropriate one-way encodings, suffice for this purpose. More concretely, they consider candidate
encodings in bilinear groups (Example 5.6) under similar knowledge-of-exponent and computational
Diffie-Hellman assumptions. These LIP constructions imply new constructions of publicly-verifiable
preprocessing SNARKs, one of which can be seen as a simplification of the construction of [Gro10] and the
other as a reinterpretation (and slight simplification) of the construction of [GGPR13].
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A More Definitions for SNARKS

A.1 Non-Malleability and Simulation Extractable zk-SNARK
The classic soundness or knowledge soundness definitions does not capture the fact that it is conceivable
for an adversary to see a simulated proof for a false instance and might use some malleability property
to modify this proof into another new proof for a different false instance. This scenario is actually very
common in security models for cryptographic schemes, so it is often desirable to have some form of
non-malleability that prevents cheating in the presence of simulated proofs. This kind of property is called
by the so-called simulation-extractability. Traditionally, simulation-extractability is defined with respect to
a decryption key (trapdoor) associated with the common reference string that allows the extraction of a
witness from a valid proof. However, in zk-SNARKs the proofs are too small to encode the full witness. We
will therefore instead define simulation-extractable zk-SNARKs using a non-black-box extractor that can
deduce the witness from the internal data of the adversary.

Definition A.1 (Simulation-Extractability). The notion of knowledge soundness can be extended to simulation-
extractable knowledge soundness if for any PPT adversariesA, PPT extractor EA such that such that

Pr

 Ver(crs, u, π) = 1 (crs, td)← G(1λ,R)
∧ (u,w) 6∈ R (u, π)← ASimProve(crs)
∧ (u, π) 6∈ Q w ← EA(crs, Q)

 = negl

where the oracle for simulated proofs SimProve is parametrized by crs, td and defined as follows:

SimProvecrs,td(ui) :
πi ← Sim(crs, td, ui)
Q = Q ∪ {(ui, πi)}
return πi

Simulation-Soundness. We can also have a corresponding notion of simulation soundness which is
implied by white-box and black-box simulation extractability. This definition does not involve an extractor
and also applies to SNARGs.

Definition A.2 (Simulation-Soundness). We say that a SNARG/SNARK is weakly simulation-sound if for
any PPT adversaryA andRwe have

Pr
[

Ver(crs, u, π) = 1 (crs, td)← G(1λ,R)
∧u /∈ LR ∧ (u, π) /∈ Q (u, π)← ASimProve(crs)

]
= negl

where SimProve = SimProvecrs,td(u) is a simulator oracle that calls Sim(crs, td, u) internally, and also
records (u, π) intoQ, and LR is the language corresponding toR.

Weaker Notions Allowing for Randomization. A weaker notion of both Simulation-Soundness and
Simulation-Extractability can be defined if we change the last winning condition in the definitions above:
SimProvecrs,td(u) oracle only records queried statements u intoQ, and the winning condition checks that
u /∈ Q.

This weak SE was first defined in [KZM+15] and allows a prover to re-randomize proofs for statements
already queried to the simulation oracle.

Strong SE/SS requires (u, π) /∈ Q, where SimProve records pairs of queried instances and simulated
proofs. If the SNARK is randomizable,A can just pass re-randomized simulated proof for an instance it
does not know a witness of and win the strong SE game. This is forbidden, thus the strong SE scheme must
be non-malleable. Honest proofs are also non-randomizable, otherwise zero-knowledge would not hold.
Weak SE relaxes this non-malleability requirement by allowing to produce π′ 6= π for the simulated (and
thus also real) proof π.
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A.2 SNARKs with Auxiliary Input and O-SNARKs.
Unfortunately, the notion of knowledge soundness as stated in Definition 3.3 is insufficient for being
used in many applications. The problem is that, when using SNARKs in larger cryptographic protocols,
adversarial provers may get additional information which can contribute to the generation of adversarial
proofs. To address this problem, a stronger, and more useful, definition of knowledge soundness considers
adversaries (provers) who may see extra information. If the prover disposes of some auxiliary information,
then the extractor should include this in their inputs as well.
SNARKs with Auxiliary Input. We recall here the definition of SNARKs knowledge soundness property
stated for some auxiliary input generated using a "benign" relation generator.

• Knowledge Soundness with Auxiliary Input. For all PPT adversariesA there exists a PPT extractor
EA such that for every auxiliary input z ∈ {0, 1}poly(λ)

Pr

 Ver(vrs, u, π) = 1 (crs, vrs, td)← G(1λ,R)
∧ z← Z(1λ)

(u,w) 6∈ R ((u, π);w)← A‖EA(crs, z)

 = negl

About Extraction and Auxiliary Input. First, we stress that in the knowledge soundness property the
extractorEA takes exactly the same input ofA, including its random tape. Second, the knowledge soundness
definition can also be relaxed to hold with respect to auxiliary inputs from specific distributions (instead
of arbitrary ones). Namely, let Z be a probabilistic algorithm (called the auxiliary input generator) that
outputs a string z, then we say that adaptive knowledge soundness holds forZ if the above definition holds
for auxiliary inputs sampled according toZ , whereZ is also a non-uniform polynomial-size algorithm.

This type of definition is certainly more useful for using SNARKs in larger cryptographic protocols,
but it also introduces other subtleties. As first discussed in [HT98], extraction in the presence of arbitrary
auxiliary input can be problematic, if not implausible. Bitansky et al. [BCPR14] further showed that
indistinguishability obfuscation implies that there are potential auxiliary inputs to the adversary that allow
it to create a valid proof in an obfuscated way such that it is impossible to extract the witness. Boyle and
Pass [BP15] show later that assuming the stronger notion of public coin differing input obfuscation there is
even auxiliary inputs that defeat witness extraction for all candidate SNARKs.

A.2.1 SNARKs in the Presence of Oracles.

Even considering some auxiliary information, the notion of SNARK does not suffice for the case in which
adversarial provers run in interactive security experiments where they are given access to an oracle. For this
setting, during a security reduction one needs to run an extractor where the secret state of the oracle is not
available.

Classically, in SNARKs, the extractor is considered to be a non-black-box algorithm that takes the same
input as the prover and any auxiliary information that the prover also had when computing the proof. This
extraction is not defined in a scenario in which adversarial provers are given black-box access, or what we
call access to an oracle.

To address this limitation of classical SNARKs, Fiore and Nitulescu in [FN16] introduced the notion of
O-SNARKs. In a nutshell, an O-SNARK is like a SNARK except that knowledge soundness must hold with
respect to adversaries that have access to an oracle O sampled from some oracle family O. More formally:

Definition A.3 (O-SNARK [FN16]). Adaptive knowledge soundness holds with respect to some oracle family
O = {O} if for all auxiliary information z←$Z in a given distribution, for every PPT adversaryAO there
exists a PPT extractor EA such that

Pr

 Ver(crs, u, π) = 1 (crs, td)← G(1λ,R)
∧ O←$ O, (u, π)← AO(crs, z)

(u,w) 6∈ R w ← EA(crs, z, qt)

 = negl
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where qt = {qi,O(qi)} is the transcript of all oracle queries and answers made and received byAO during its
execution.

Candidate Constructions for O-SNARKs. The results in [FN16] relate the security of O-SNARKs to the
classical SNARK security in the (better studied) case of extraction with auxiliary input, thus avoiding making
further conjectures on the plausibility of extractability assumptions.

In the case of signing oracles for example, Fiore and Nitulescu [FN16] show that there are a few candidate
O-SNARKs.

Computationally-sound proofs of Micali [Mic94] yield O-SNARKs for every oracle family, in the random
oracle model without further restrictions.

O-SNARKs also exist for specific classes of signature oracles: If we require the underlying signatures
to be hash-and-sign signatures and model the hash as a random oracle, then any classical SNARK is an
O-SNARK for that oracle. In the standard model, if we require the message space of the signature scheme
to be properly bounded and require the adversary to query almost the entire message space, or we require
the adversary to issue oracle queries before seeing the common reference string, then all known SNARKs
can be used as O-SNARKs.
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